
Taller 7: Resolviendo problemas con la cabeza mientras GeoGebra razona automáticamente

Mª Pilar Vélez Melón (Universidad Nebrija)

pvelez@nebrija.es

Pilar Vélez, Tomás Recio, Zoltán Kovács y ...

Razonando con la ayuda de GeoGebra

- ➤ Trazar una construcción en GeoGebra y arrastrar los elementos de dicha construcción → conjeturar propiedades y convencerse de su validez en un gran número de casos.
- ➤ Razonar automáticamente con GeoGebra → disponer de una "calculadora geométrica", capaz de sacar conclusiones con rigor matemático (nuevas funcionalidades).

Capacidad visual de GeoGebra

+

Capacidad de razonamiento automático mediante cálculo simbólico

Razonamiento en Matemáticas

Deducción	Inducción	Abducción
Regla: Las diagonales de un paralelogramo forman ángulo recto. Caso: Este polígono es un paralelogramo. Resultado: Las diagonales de este polígono forman ángulo recto.	Caso: Este polígono es un paralelogramo. Resultado:. Las diagonales de este polígono forman ángulo recto. Regla: Las diagonales de un paralelogramo forman ángulo recto.	Regla: Las diagonales de un paralelogramo forman ángulo recto. Resultado: Las diagonales de este polígono forman ángulo recto. Caso: Este polígono es un paralelogramo.

Y... Por qué no utilizar los tres tipos de razonamiento en la clase de Geometría ...

... con la ayuda de GeoGebra

Para razonar con la ayuda de GeoGebra podemos usar diferentes medios:

- Visual: trazamos una construcción en GeoGebra y arrastramos los elementos de dicha construcción (vista geométrica) para verificar de modo visual una cierta propiedad.
- Numérico: comprobamos una cierta propiedad de forma numérica (vista algebraica) en una varias construcciones concretas.
- Instrumental: verificamos una cierta propiedad mediante la herramientas de razonamiento automático (ART) de GeoGebra.
- Matemático: demostramos matemáticamente en el cuaderno una cierta propiedad.

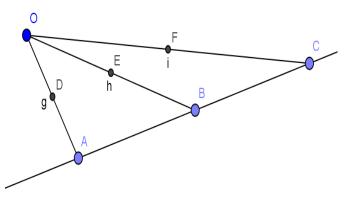
¿Qué es ART?

Las utilidades para razonamiento automática de GeoGebra (ART) son una colección de herramientas y comandos GeoGebra (desde 5.0) listas para derivar, descubrir y/o demostrar de modo automático enunciados de geometría sobre una construcción dinámica*

* Un tutorial (en inglés) sobre GGB-ART se puede descargar en https://github.com/kovzol/gg-art-doc

ART-Razonamiento automático con GeoGebra: Derivación

Derivación:


Hallar las relaciones existentes entre objetos de una construcción geométrica y/o conjeturar.

Comando: Relación (<Objeto>, <Objeto>)

Relación ({lista}) (hasta 4 objetos en la lista)

ART-Comando Relación

Un ejemplo con Relación

Por ejemplo, tracemos con GeoGebra tres puntos *A, B* y *C* en una recta y un punto libre *O*.

Preguntemos por la relación entre los puntos medios D, E y F de los segmentos OA, OB y OC respectivamente. Escribimos en la línea de comandos Relación [{D,E,F}].

A continuación podemos proponer trazar la recta DE que evidentemente pasará por F. ¿Qué relación hay ente las rectas AB y DE?

ART-Comando Relación

¿Qué es posible comparar con Relación?

Cuando ejecutamos el comando Relación se muestra una caja con un mensaje que da información (numérica) para la construcción concreta dibujada sobre

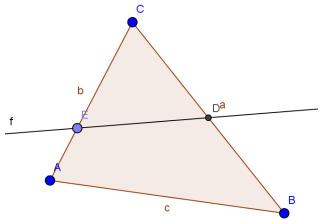
- dos rectas son perpendiculares (o son paraleas),
- dos (o más) objetos (puntos, longitudes, áreas) son iguales,
- un punto está en una recta o en una cónica,
- una recta es tangente (o es transversal) a una recta o a una cónica,
- tres puntos están alineados,
- Tres rectas son concurrentes(o paralelas),
- Cuatro puntos son cocíclicos (o colineales).

Algunas de estas propiedades, numéricamente establecida, puede ser analizada en el caso general (con coordenadas arbitrarias): en estos casos aparece en la caja un botón *Más...* que nos aporta información adicional.

ART-Razonamiento automático con GeoGebra: Descubrimiento

Descubrimiento:

Determinar las modificaciones que se deben efectuar en la construcción geométrica para que una relación sea cierta, es decir, ajustar nuestro enunciado para que tal relación sea verdad.


Comando: EcuaciónLugar [< Expresión lógica > , < Punto libre >]

Al ejecutar el comando GeoGebra calcula una ecuación implícita en la vista algebraica y dibuja su traza en vista geométrica.

ART-Comando Ecuación Lugar

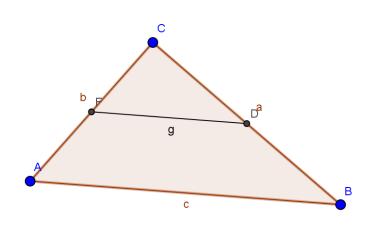
Un ejemplo con Ecuación Lugar

Investiguemos una configuración similar pero planteándonos descubrir donde tendría que estar E para que ambas rectas sean paralelas.

Construyamos un triángulo de vértices *A*, *B* y *C* y lados opuestos *a*, *b* y *c* respectivamente. Sea *D* el punto medio de *a* y consideremos un punto *E* en el lado *b*. Nos preguntamos ahora, ¿dónde tiene que estar *E* para que *AB* y *DE* sean paralelas?

Hagamos la pregunta a GeoGebra, escribiendo en la barra de comandos: EcuaciónLugar [SonParalelas [c, f], E].

ART-Razonamiento automático con GeoGebra: Demostración

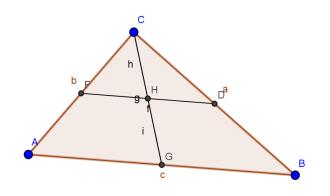

Demostración:

Comprobar si las relaciones conjeturadas son ciertas en general (es decir, si son teoremas) o si se verifican salvo en algunos casos (en general, degenerados).

La respuesta aparece en la "Vista algebraica" en el listado "Valor lógico" como true or false.

ART- Comando Demuestra

Un ejemplo con Demuestra

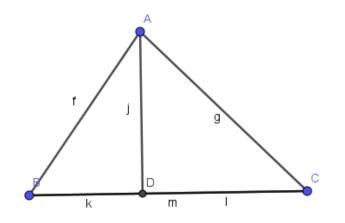

Retomando el ejemplo anterior, una vez trazado el punto medio *F* de *b* y el segmento *g* que une *D* y *F*, pedimos a GeoGebra que demuestre nuestra conjetura. Para ello escribiremos en la línea de comandos:

Demuestra[SonParalelas[c,g]].

Intentemos ahora encontrar algún teorema válido para la relación ente los segmentos c y g.

ART-Comando DemuestraDetalles

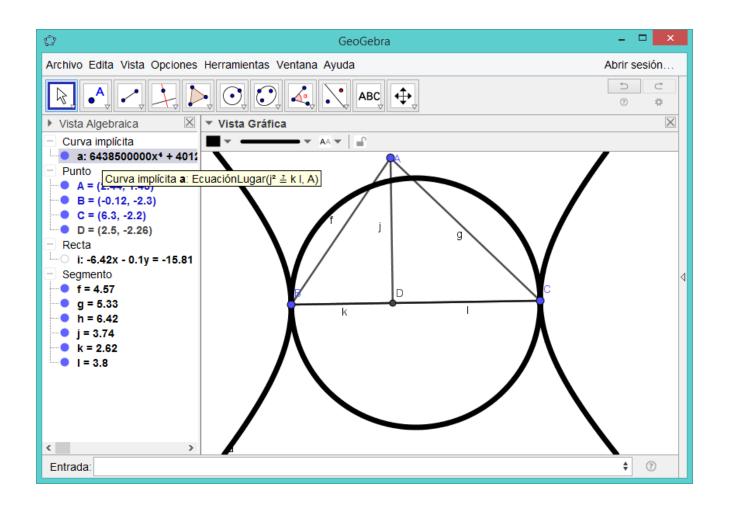
Un ejemplo con DemuestraDetalles



Construimos el punto medio G de C y trazamos el segmento f entre C y G. Sea H el punto de intersección de f y g. Preguntemos si los segmentos h e i en que divide H al segmento g son iguales En este caso Demuestra [h==i] responde true.

DemuestraDetalles[h==i] nos devuelve {true,{"Están alineados[A,B,C]"}, es decir nuestra conjetura es cierta excepto cuando A, B y C están alineados.

Descubriendo teoremas


¿Qué triángulos verifican el Teorema de la altura?

En la ventana gráfica de GeoGebra dibujar tres puntos *A*, *B* y *C* y trazar los segmentos para construir el triángulo *ABC*. A continuación trazar la altura desde A

La tesis del teorema de la altura es: $\frac{j}{k} = \frac{l}{j} \iff j^2 = k * l$

Preguntemos a GeoGebra: EcuaciónLugar[j^2==k*1, A] ...

Confrontar (y poner a cooperar!) el "enseñar de un modo diferente" con "enseñar algo diferente"!

Kovács, Z., Recio, T., Vélez, M.P. (2017) Diseño de experiencias de aula usando razonamiento automático con GeoGebra, Actas VIII CIBEM.

Y ahora ...

Abrid una ventana de GeoGebra y a resolver problemas con la cabeza mientras GeoGebra razona automáticamente

EJERCICIOS

http://www.nebrija.es/~pvelez/DiaGeoGebra2018/