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a b s t r a c t

In this paper, a novel low-complexity Concurrent Error Detection (CED) technique for Fast Fourier Trans-
form-based convolution is proposed. The technique is based on checking the equivalence of the results of
time and frequency domain calculations of the first sample of the circular convolution of the two convo-
lution input blocks and of two consecutive output blocks. The approach provides low computational com-
plexity since it re-uses the results of the convolution computation for CED checking. Hence, the number
of extra calculations needed purely for CED is significantly reduced. When compared with a conventional
Sum Of Squares – Dual Modular Redundancy technique, the proposal provides similar error coverage for
isolated soft errors at significantly reduced computational complexity. For an input sequence consisting
of complex numbers, the proposal reduces the number of real multiplications required for CED in adap-
tive and fixed filters by 60% and 45%, respectively. For input sequences consisting of real numbers, the
reductions are 66% and 54%, respectively.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to shrinking process geometries and reducing operating
voltages, soft errors are becoming an increasingly important reli-
ability problem in the implementation of digital systems [1]. The
traditional approach to deal with errors or faults has been the
use of Modular Redundancy (MR) in which the circuit is replicated
such that errors can be detected when two identical modules are
used and corrected when three identical modules are used [2].
The first configuration, known as Dual Modular Redundancy
(DMR), and the latter, known as Triple Modular Redundancy
(TMR), are widely used in fault tolerant systems.

An alternative approach is Algorithm-Based Fault Tolerance
(ABFT) [3] in which fault tolerance is incorporated in the algorithm
at the system level. ABFT has been applied to the computation of
the Fast Fourier Transform (FFT) [3,4]. For example, in [3] the
Sum Of Squares (SOS) technique was proposed for detection of er-
rors in the FFT by computing and comparing the sums of the
squares of the inputs and the outputs. From Parseval’s theorem,
if no error has occurred, then the SOSs should be equal [5]. ABFT
approaches have also been proposed for fault-tolerant convolution.
For example, in [6], cyclic error-correcting codes were used in
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implementing fault-tolerant convolution. The approach works for
direct implementation of convolution but not for transform-based
convolution. This is a major drawback as the computational cost of
direct implementation is, in most cases, much larger than that of
transform-based implementations. In [7–9] approaches based on
the use of Residue Number Systems (RNS) for the computation
were presented. These approaches typically incur significant area
overhead and require specialized arithmetic units. The use of two
independent convolutions with different transform lengths was re-
cently proposed in [10]. The approach uses recognition of error
patterns in the convolution outputs to determine the module in er-
ror and perform correction. The use of two independent convolu-
tions leads to high computational complexity. In [11], an extra
zero sample was added to all input data blocks, and error checking
was performed at the block output. The cost of implementing the
technique is very low, and it provides some error detection. How-
ever, error coverage is poor in the inverse transform.

In this work, a novel scheme for detecting errors in FFT-based
convolutions is introduced. The technique is based on checking
the equivalence of the results of time and frequency domain calcu-
lations of the first sample of the circular convolution of two data
blocks. This check is applied to the two convolution input blocks
and to two consecutive convolution output blocks. The method is
of low computational complexity because it re-uses results avail-
able as part of the convolution process for CED checking. In addi-
tion, the computational complexity of the output block checking
is shared between two consecutive convolutions. The computa-
tional complexity and single error coverage of the proposed
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method is compared to that of a conventional Sum Of Squares –
Dual Modular Redundancy (SOS-DMR) approach [3]. The
SOS-DMR technique was selected for comparison, since it is a sim-
ilar low-complexity, detection-only method and does not require
the use of a specialized number system. Results show that the
proposed technique outperforms the SOS-DMR approach both in
terms of error coverage and complexity. This makes it an interest-
ing option for applications in which error detection is required.

The rest of the paper is structured as follows. Section 2 covers
the background to the problem. Section 3 details the proposed
CED technique, and Section 4 compares the performance of the
technique to that of a conventional approach. The paper is con-
cluded in Section 5.
2. Background

The linear convolution y(n) of two sequences h(n) and x(n) can
be defined in the time domain as:

yðnÞ ¼
XL�1

i¼0

hðiÞxðn� iÞ ð1Þ

where L is the length of sequence h(n) [5].
In common filtering applications, the input sequence x(n) is

long. For example in many cases the input signal comes from an
ADC that produces millions of samples per second. Hence for prac-
tical implementation of the convolution, the sequence is seg-
mented into blocks. Convolution is then performed on successive
blocks, and allowance is made for the necessary overlapping of
data between blocks using, for example, the overlap-save method
[5].

The block length depends on the filter impulse response, for
example in 10 Gb/s Ethernet transceivers, filters with hundreds
of coefficients are used. For large block lengths, the computational
complexity of convolution can be reduced by means of the FFT via
a frequency domain calculation. The N-point circular convolution,
r(l), of two N-point data sequences, x1(n) and x2(n), is equal to
the Inverse FFT (IFFT) of the multiplication of the FFTs, X1(k) and
X2(k), of the original sequences [5]:

rxxðlÞ ¼
XN�1

n¼0

x1ðnÞx2ððl� nÞmodNÞ ¼ IFFT½X1ðkÞ � X2ðkÞ� ð2Þ

The implementation of the technique is illustrated in Fig. 1.
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Fig. 1. Implementation of FFT-based convolution.
3. Proposed technique

Firstly, we consider the general case where the convolution
input sequences consist of complex numbers, x1(n) and x2(n).

Single errors in the calculation of FFTs, X1(k) and X2(k), of two
N-point sequences, x1(n) and x2(n), can be detected by comparing
the first sample of the circular convolution rxx(0) as calculated in
the time domain r0xx(0) with the same value obtained using a
frequency domain calculation, r00xx(0).

In the time domain, rxx(0) can be calculated as:

r0xxð0Þ ¼ x1ð0Þ � x2ð0Þ þ
XN�1

m¼1

½x1ðmÞ � x2ðN �mÞ� ð3Þ

Using the frequency domain, rxx(0) can be calculated as:

r00xxð0Þ ¼
1
N
�
XN�1

k¼0

½X1ðkÞ � X2ðkÞ� ð4Þ

Most single errors in calculation of X1(k) and X2(k), i.e. the FFT
computations, can be detected by comparing the time domain re-
sults r0xx(0) with the frequency domain result r00xx(0). If the values are
the same, then it is highly likely that there are no errors in the FFT
outputs X1(k) and X2(k). If they differ, then an error has occurred –
either in the time domain or the frequency domain computation.

Herein we note that, in the case of FFT-based convolution, the
first sample of the circular convolution calculated using the fre-
quency domain method r00xx(0) is obtained as a result of the convo-
lution calculation. Hence, it is available to the CED checker with no
computational overhead. As can be noted from Eq. (4), most errors
in the FFT and multiplication operations will cause the value of
r00xx(0) to differ from the correct value. Therefore, the r0xx(0) = r00xx(0)
check provides good single error coverage for both the FFT and
the multiplication stages of the convolution process.

Errors in the IFFT stage can be detected by considering the out-
puts of two successive convolution blocks yj(n) and yj+1(n). A time
domain calculation of the first sample of the circular convolution of
the two block outputs is given by:

r0yyð0Þ ¼ yjð0Þ � yjþ1ð0Þ þ
XN�1

m¼1

½yjðmÞ � yjþ1ðN �mÞ� ð5Þ

Again, this result can be checked against a frequency domain
calculation of the same quantity where Yj(k) and Yj+1(k) are the
FFTs of yj(n) and yj+1(n) respectively.

r00yyð0Þ ¼
1
N
�
XN�1

k¼0

½YjðkÞ � Yjþ1ðkÞ� ð6Þ

From (2), it can be seen that Yj(k) and Yj+1(k) are available as
part of the convolution process. They are the outputs of the multi-
plication stages of the successive block computations, i.e. the in-
puts to the IFFT stages. Hence they are available to the CED
checker with no computational overhead.

Most errors in the IFFT stages will cause r0yy(0) to differ from
r00yy(0). Thus the r0yy(0) = r00yy(0) check provides good single error cov-
erage for the IFFT stages of two consecutive convolutions.

Thus most single errors in the convolution calculation will be
detected by testing the conditions r0xx(0) = r00xx(0) and r0yy(0) =
r00yy(0). If they are not met, then an error has occurred, either in
the convolution calculation or in the CED checkers. The proposed
technique is illustrated in Fig. 2.

It is known that complex multiplication can be implemented as
three real multiplications and five real additions [12]. Based on
this, the additional computational complexity of calculating the
first point of the convolution using the time domain (r0xx(0),
r0yy(0)) or frequency domain approach (r00yy(0)) is 3N real multiplies



Fig. 2. Implementation of FFT-based convolution with the proposed CED technique.
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plus 7N-2 real adds. By taking into account that the computational
cost of r0yy(0) and r00yy(0) is shared among two blocks, the total com-
putational complexity of the CED checks is 6N real multiplications
and 14N-4 real additions per output block.

In the case of input sequences of real numbers, the computa-
tional complexity of the overall convolution can be reduced by not-
ing that the Discrete Fourier Transform (DFT) of a sequence of real
numbers is symmetric [13]. If this optimization is employed, then
the proposed CED method must be augmented by adding DMR to
the calculation of the imaginary part of the element-wise multipli-
cation, i.e. imag(Y[k]).

By taking advantage of symmetry and real data, and allowing
for DMR, the computational complexity in the case of input se-
quences of real numbers is 2.5N + 2 real multiplications and
4N + 3 real additions per output block.

For practical implementations, the proposed technique must be
robust to round-off errors in FFT and IFFT implementation. This can
be done by using a tolerance level, s, in the check, such that small
differences do not trigger an error, for example:

ðjr0xxð0Þ � r00xxð0Þj < sÞandðjr0yyð0Þ � r00xxð0Þj < sÞ no error

ðjr0xxð0Þj � r00xxð0ÞjP sÞorðjr0yyð0Þ � r00yyð0ÞjP sÞ error ð7Þ

This approach was considered in detail in [3] for checking
stand-alone FFTs using Parseval’s theorem. In a practical design,
the threshold level is determined by simulation. The threshold
level is typically set to the value of the maximum observed
difference over all error-free simulations plus a safety margin.

When an error is detected, the FFTs associated with the CED
checker must be re-computed. The proposed method is not able
to determine which FFT suffered the error and therefore, in the
worst case, both FFTs/IFFTs must be re-computed. Individual CED
checkers applied to each individual FFT/IFFT stage would ensure
that in the worst case only one FFT/IFFT would need to be
re-computed. However, since error events are rare, the average
number of additional operations due to the extra re-computation
is negligible when compared to the total number of operations
for convolution.

If sufficient memory is available, then the computational
overhead of re-computation can be reduced by comparison of the
outputs of the first re-calculated FFT/IFFT with the original results.
If the outputs differ and errors are rare events, then it can be
assumed that the error occurred in the original calculation of the
first FFT/IFFT and not in the original calculation of the second
FFT/IFFT. Based on this, the system can proceed without re-calcu-
lating the second FFT/IFFT. This approach could be used for the
FFTs calculating X1(k) and X2(k) in the case of the first check and
for the IFFTs calculating yj(n) and yj+1(n) in the case of the second
check.

The latency required for error detection is mainly related to the
fact that the technique relies on computing the first sample of the
convolution of two consecutive output blocks. That means that one
block delay is added for the purpose of error detection. For error
correction, the time required for re-computation of the blocks in
error is added to the latency, such that in the worst case a three-
block delay is added to perform error detection and correction.
4. Evaluation

In this section, the proposed technique is evaluated in terms of
complexity and fault coverage. For complexity, the required num-
ber of operations will be used as the metric for the evaluation. For



Table 1
Computational complexity of the proposed CED technique and of the conventional SOS-DMR technique.

Convolution type Op SOS-DMR Proposed technique Saving (%)

Complex inputs, adaptive filter Mult 15N 6N 60.0
Add 17N-6 14N-4 17.6

Complex inputs, fixed filter Mult 11N 6N 45.4
Add 13N-4 14N-4 �7.7

Real inputs, adaptive filter Mult 7.5N + 9 2.5N + 2 66.6
Add 8.5N + 5 4N + 3 52.9

Real inputs fixed filter Mult 5.5N + 7 2.5N + 3 54.5
Add 6.5N + 5 4N + 3 38.5

Table 2
Single fault coverage for various convolution lengths (N).

N SOS-DMR (%) Proposed technique (%)

64 98.70 99.85
128 97.89 99.82
256 96.70 99.79
512 96.42 99.77
1024 96.61 99.73

Table 3
Double fault coverage for various convolution lengths (N).

N SOS-DMR (%) Proposed technique (%)

64 99.99 99.997
128 99.99 100
256 99.98 99.998
512 99.98 99.998
1024 99.97 99.995
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fault coverage, the analysis focuses on soft errors [1,2]. These are
transient changes in the logic value of a register or logic gate due
to a radiation particle hit. After a soft error, the circuit continues
its normal operation, and all elements remain fully operational.
However, the incorrect logic value can propagate to the module
output, leading an output error. For a purely data-path circuit, such
as a convolution module, most soft errors propagate through the
circuit, leading to output errors. Therefore the effectiveness of
the proposed technique is evaluated in terms of the percentage
of errors that are detected when soft errors are inserted in the
circuit.

4.1. Error model

It is assumed that soft errors are isolated events that occur
rarely. For terrestrial applications, soft error frequency is in the or-
der of days or months, while in space applications they are much
more frequent [1,2]. In most applications, sampling rates are in
the order of kHz–MHz, and block sizes are in the range of 64–
5120 samples depending on filter length and memory size. Thus,
only a very small percentage of the blocks will suffer errors. There-
fore, it is reasonable to assume that soft errors are single events,
that is, only one particle hit occurs at a time, and are isolated, that
is, errors do not occur in consecutive blocks. However, a single soft
error event, caused by a particle hit, can produce a change in the
logic value of a single node or of multiple nodes. Changes in the
values of multiple nodes arising from a single event are commonly
known as Multiple Cell Upsets (MCUs) [14], as opposed to Single
Cell Upsets (SCUs). Both SCUs and MCUs were considered herein.

4.2. Computational complexity

The computational complexity of the proposal was compared to
that of applying the conventional Sum Of Square (SOS) check [3] to
each FFT and IFFT individually and applying Dual Modular
Redundancy (DMR) to the multiplication stage. The SOS check
relies on Parsevaĺs theorem, which states that the energy, or SOS,
of an N point sequence, x(n), and its DFT, X(k), are equal [3].

The computational complexity of the proposed technique and of
the SOS-DMR approach is given in Table 1. In the case of fixed fil-
tering, SOS checks are not needed for X2[k], since it does not need
to be re-calculated. In the case of input sequences of real numbers,
the number of operations needed for CED is reduced by taking
advantage of the symmetry of the DFT for real data.

4.3. Fault coverage

Matlab simulations were run to determine the fault coverage of
the proposed method in comparison to the SOS-DMR scheme. The
schemes were applied to detect errors in convolutions with inputs
sequences consisting of complex random numbers. The real and
imaginary parts of the input data were uniformly distributed in
the range �0.5 to 0.5. The block length of the data was varied
between 64 and 1024 points. Based on the results of error-free
simulations, a threshold level of 10�5 was used in the comparisons.

To assess SCU performance, a single soft error was inserted dur-
ing the computation of a pair of convolution blocks. The soft error
was simulated by adding a random value to either the real or imag-
inary part of one of the following: (1) the FFT butterfly, (2) the
complex multiplication, or (3) the IFFT butterfly output. The oper-
ation output in error was selected at random. Since a single soft er-
ror can affect a number of module output bits, the simulated error
was uniformly distributed in the range �0.5 to 0.5. For example, a
SCU immediately prior to a multiplication will cause an error equal
to the value of the multiplicand. The simulation was iterated
100,000 times, and the results are presented in Table 2. It can be
observed that good fault coverage (>95%) is achieved in both cases
with the proposed technique detecting slightly more errors than
the SOS-DMR approach. To investigate MCU performance, simula-
tions were performed as in the SCU case except that two simulated
errors with random locations and values were introduced in every
iteration. The results are given in Table 3.

Both for SOS-DMR and for the proposed technique, a small per-
centage of errors are left undetected. In most cases, this occurs
when the errors at the output are small and, typically, their impact
is negligible. The proposed technique is therefore suitable for
applications that can tolerate a small number of undetected errors.
An example of such application is in communication receivers in
which an undetected error may cause internal bit errors that can
be corrected by subsequent processing of an error correction code
or by retransmission of the data [15].
5. Conclusions

A novel Concurrent Error Detection technique for FFT-based
implementations of convolution was proposed. The method is
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based on comparison of time and frequency domain calculations of
the first sample of the circular convolution of two sequences. The
comparison check is applied to each convolution output block
and between successive convolution output blocks to ensure
adequate error coverage. The method is shown to provide similar
single error coverage to, and significant computational complexity
savings over, the conventional module SOS-DMR CED technique.
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