
ISSC 2012, NUI Maynooth, June 28-29

A Novel Concurrent Error Detection Technique

for the Fast Fourier Transform

Pedro Reviriego*, Chris J. Bleakley**, Juan Antonio Maestro*

*Universidad Antonio de Nebrija, C/ Pirineos, 55

E-28040 Madrid, Spain

email: {previrie, jmaestro}@nebrija.es

**UCD School of Computer Science and

Informatics, University College Dublin

email: chris.bleakley@ucd.ie

Abstract— A novel Concurrent Error Detection technique for the Fast Fourier Transform

(FFT) is proposed in this paper. The technique is similar to the conventional Sum of Squares

(SOS) approach but is of lower computational complexity. Complexity reduction is achieved

by checking the FFTs of two data blocks in a single calculation. The technique is based on

checking the equivalence of the results of time and frequency domain calculations of the first

sample of the circular convolution of the two blocks. In the case of error, the FFTs of both

blocks must be recomputed. Assuming that errors are rare, this additional cost has negligible

impact on the average number of operations per block.

Keywords – Soft Errors, Concurrent Error Detection.

I INTRODUCTION

Due to decreases in process geometry and

operating voltage, soft errors are becoming an

increasingly important problem jeopardizing the

reliability of digital systems [1]. Digital Signal

Processing (DSP) systems are among those affected

by soft errors. A number of techniques have been

proposed to protect DSP circuits. Algorithm level

fault tolerant techniques rely on checking the

numerical properties of the system inputs and outputs

[2],[3],[4]. Due to its importance in DSP systems,

several schemes have been proposed for detection of

errors in the computation of the Fast Fourier

Transform (FFT) [5],[6],[7].

One of the most commonly Concurrent Error

Detection (CED) schemes for the FFT is the Sum of

Squares (SOS) check based on Parseval´s theorem

[2]. The theorem states that the energy, or SOS, of an

N point sequence, x(n), and its Discrete Fourier

Transform (DFT), X(k), are equal:

��
−

=

−

=

⋅=
1

0

2
1

0

2
)(

1
)(

N

k

N

n

kX
N

nx

 (1)

This theorem is used to detect errors in an

FFT computation by computing and comparing the

SOS of the inputs and outputs of the FFT. If they

differ then it is assumed that an error occurred in the

calculation of the FFT and the FFT is re-computed

and re-checked. In [2], the coverage of the SOS

method was analyzed in detail showing that it can

detect most errors in the FFT. For a real sequence, N

real multiplications are needed to perform the SOS

of the input points and N+2 for the output points as

the DFT of a real signal needs only N/2+1 values due

to its symmetry [8]. Therefore 2*N +2 real

multiplications are needed to implement the SOS

check.

In many DSP applications, the FFT is

computed for multiple consecutive data blocks

corresponding to different time windows in a long

sequence [8]. Hence two SOS calculations and one

comparison must be performed for every block. This

is illustrated in Figure 1.

In this work, a novel scheme for detecting

errors in FFT implementations is introduced. The

proposed method uses a single check for pairs of data

blocks, thus reducing computational complexity.

Section II describes the proposal in detail.

The effectiveness of the technique in the two-block

case is considered in Section III. Section IV

considers the extension of the proposal to the single-

block case. Section V concludes the paper.

�
−

=

1

0

2
)(

N

n

nx

�
−

=

⋅
1

0

2
)(

1 N

k

kX
N

Figure 1: Implementation of the Sum Of Squares check on a long signal.

[]�
−

=

−⋅

+⋅

1

1

21

21

)()(

)0()0(

N

m

mNxmx

xx

[]�
−

=

⋅⋅
1

0

21)()(
1 N

k

kXkX
N

Figure 2: Implementation of the proposed technique on consecutive blocks of a long signal.

II PROPOSED TECHNIQUE

It is well known that the N-point circular

convolution, r(l), of two N-point data sequences,

x1(n) and x2(n), is equal to the Inverse DFT of the

multiplication of the DFTs, X1(k) and X2(k), of the

original sequences [8], that is:

[])()(

)()()(

21

21

kXkXIDFT

nxnxlr

⋅=

⊗=

 (2)

where ⊗ denotes N-point circular convolution

and IDFT[.] denotes the Inverse DFT.

Herein, we propose that single errors in the

calculation of X1(k) and X2(k) can be detected by

comparing the first sample of the circular

convolution, r(0), as calculated in the time domain

with that obtained using a frequency domain

calculation.

In the time domain, r(0) can be calculated as:

r ' 0() = x1 0() ⋅ x2 0() + x1(m) ⋅ x2(N −m)[]
m=1

N−1

�
 (3)

Using the frequency domain, r(0) can be

calculated as:

r ' ' 0() =
1

N
⋅ X1(k) ⋅ X2(k)[]
k= 0

N−1

�
 (4)

since the first element of the Inverse DFT

output is simply the mean of the input sequence.

A single error in the calculation of X1(k) or

X2(k) will cause the condition r’(0)==r’’(0) to be

false.

The implementation of the proposed

technique on an incoming signal is illustrated in

Figure 2.

Since multiplication is the most complex

arithmetic operation used in computation of the FFT,

the number of multiplications will be used to

compare the implementation cost of the proposed

technique with that of the SOS check. For real input

sequences, the proposed technique requires N real

multiplications and N/2+1 complex multiplications.

As complex multiplications can be implemented with

only three real multiplications [9], the total number

of multiplications required for the proposed check is

2.5*N+3. However, these operations check two input

blocks in a single calculation. So the number of real

multiplications per input data block is 1.25*N+1.5.

This compares with the 2*N+2 real multiplications

needed to perform the SOS check.

The price paid for the reduced number of

operations is that when an error is detected, the

proposed method is not able to determine which FFT

suffered the error. It may have occurred in the

computation of either FFT, i.e. X1(k) or X2(k).

Therefore both FFTs must be recomputed. This

increases the number of operations required relative

to the SOS check since, in the SOS case, only one

block has to be re-computed. However, if we assume

that errors are a rare event then the average number

of additional operations per block is negligible. For

example, if errors occur in 0.01% of FFT

calculations then 0.02% of checks will detect an

error, requiring an additional 0.02% of FFTs to be re-

calculated.

If sufficient memory is available then the

computational overhead can be reduced by

comparison of the outputs of the first re-calculated

FFT with the original results. If the outputs differ,

and errors are rare events, then it can be assumed that

a single error occurred in the original calculation of

the first FFT and that there was no error in the

original calculation of the second FFT. Based on

this, the system can proceed without re-calculating

the second FFT. In the example, this would reduce

the additional re-calculations to 0.015% of FFTs.

As with the SOS check, the proposed

technique has to deal with round-off errors in FFT

implementation. This can be done by using a

tolerance level τ in the check, such that small

differences do not trigger an error:

r ' 0() − r ' ' 0() < τ no error

r ' 0() − r ' ' 0() ≥ τ error
 (5)

This approach was considered in detail for the

SOS check in [2].

III TWO BLOCK EVALUATION

In this section the proposed technique is

evaluated in terms of fault coverage and complexity.

a) Fault Coverage

Matlab simulations were run to test the impact

of round off error and tolerance levels on the

proposed scheme. The scheme was used to detect

errors in FFTs with random data inputs. Soft errors

were simulated by inserting a single random error in

each FFT pair at a random location. The input data

and errors were uniformly distributed in the range -

0.5 to 0.5. A tolerance level of 10
-5

 was used.

The results for 100,000 simulations are

provided in Table I for different FFT block lengths.

It can be observed that good fault coverage is

achieved in all cases. The same simulations were

performed using the SOS check and the results are

shown in Table II. It can be observed that also good

fault coverage is achieved although slightly lower

than for the proposed technique.

Table 1: Fault coverage of the proposed technique

for different FFT lengths.

N Fault Coverage (%)

64 99.93

128 99.91

256 99.90

512 99.86

1024 99.85

Table 2: Fault coverage of the SOS technique for

different FFT lengths.

N Fault Coverage (%)

64 99.72

128 99.70

256 99.68

512 99.67

1024 99.59

b) Complexity

As discussed before, the proposed technique

requires less real multiplications to detect errors than

the traditional SOS approach, but it requires more

operations to correct errors since both FFTs have to

be recomputed. To take this into account, we can

assume that the probability of an error occurring in

an FFT calculation is f. The average number of

multiplications per block can be computed for both

techniques as:

)(log
2

32 2 N
N

fNN
SOSmult ⋅⋅⋅+⋅≅

 (6)

)(log325.1 2Pr
NNfNN

oposedmult ⋅⋅⋅+⋅≅
 (7)

In Figure 3, the equations are evaluated for

N=1024 and various values of f. It can be observed

that when the probability of error falls below 4% the

proposed technique is more efficient than SOS. In

typical applications, the probability of faults in a

single block calculation is very low and the proposed

technique would typically only require 1.25/2�0.63

times the number of multiplications needed in SOS

check.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Probability of error

N
u
m

b
e
r

o
f

M
u
lt
ip

lic
a
ti
o
n
s

SOS

Proposed

Figure 3: Comparison of the number of

multiplications per block.

IV EXTENSION TO THE SINGLE BLOCK CASE

The proposed technique relies on the

computation of the FFT over multiple data blocks.

However it can be extended to cover computation of

a single block.

The FFT is commonly implemented using the

Decimation in Time (DIT) or the Decimation in

Frequency (DIF) algorithms [8]. In both cases,

computation of an N point FFT is decomposed into

computation of two N/2 point FFTs that are then

combined. Implementations of these schemes are

illustrated in Figures 4 and 5 for the 8-point case.

Figure 4: Decimation in Time (DIT) computation of an N

point FFT.

Figure 5: Decimation in Frequency (DIF)

computation of an N point FFT.

These structures can be used in conjunction

with the proposed checker. In effect, each N/2-point

FFT is treated as a block. This ensures that most

errors occurring in these sub-blocks are detected.

However, errors in the N/2 multiplications (�
0
, �

1
,

�
2
, …), outside these blocks, are not detected. To

detect these errors, the multiplications must be

duplicated and the outputs compared. This incurs an

additional cost that makes the technique less

attractive. In the case of the DIT computation N/2

additional complex multiplications are needed

resulting in a cost that exceeds that of the SOS

technique. The same occurs for the DIF case where

in addition to the N/2 multiplications, the N/2 point

DFT at the bottom has now complex inputs which

also increases the cost. The proposed technique can

be attractive for a single block when partial coverage

for error detection is acceptable and the priority is to

minimize the additional cost. In that case, the

multiplications can be left unprotected and the total

cost would be 0.63 that of the SOS check but with a

reduced coverage for error detection.

V CONCLUSIONS

A novel Concurrent Error Detection technique

for FFT implementations has been proposed. The

technique is similar to the Sum of Squares (SOS)

approach but can be implemented more efficiently.

More precisely, less that 63% of the multiplications

needed to implement the SOS check are sufficient to

implement the proposed technique when it is applied

to multiple blocks. When applied to FFT

computation of a single block the proposed technique

reduces the cost at the expense of lower fault

coverage. These cost savings make the proposed

scheme an interesting alternative to the SOS check to

detect errors in the computation of the FFT.

REFERENCES

[1] Baumann, R., "Soft errors in advanced

computer systems", IEEE Design & Test of

Computers, Volume 22, Issue 3, May - June 2005,

pp. 258 – 266.

[2] Reddy A. and Banarjee P.,

“Algorithm-based fault detection for signal

processing applications”, IEEE Transactions on

Computers, Volume 39, Issue 10, Oct. 1990, pp.

1304-1308.

[3] Huang Y.-H., “High-Efficiency

Soft-Error-Tolerant Digital Signal Processing Using

Fine-Grain Subword-Detection Processing”, IEEE

Trans. Very Large Scale Integration Systems, vol.

18, no 2, pp. 291-304, Feb. 2010.

[4] Sundaram S. and Hadjicostis C.N.,

“Fault-Tolerant Convolution via Chinese Remainder

Codes Constructed from Non-Coprime Moduli”,

IEEE Trans. Signal Processing, vol. 56, no. 9, pp.

4244-4254, Sept. 2008.

[5] Tao D.L. and Hartmann, C.R.P.,

"A novel concurrent error detection scheme for FFT

networks", IEEE Transactions on Parallel and

Distributed Systems, vol. 4, no. 2, Feb 1993, pp.

198-221.

[6] Lonmardi, F. and Muzio, J.C.,

"Concurrent error detection and fault location in an

FFT architecture", IEEE Journal of Solid-State

Circuits, vol. 27, no. 5, May 1992, pp. 728-736.

[7] Oh, C.G. and Youn, H.Y., "On

concurrent error detection, location, and correction

of FFT networks", The Twenty-Third International

Symposium on Fault-Tolerant Computing, 1993.

FTCS-23. Digest of Papers, June 1993, pp.596-605.

[8] Oppenheim A. V. and Schafer R.

Discrete Time Signal Processing, Prentice Hall 1999.

[9] R.E. Blahut, Fast Algorithms for

Digital Signal Processing, Addison-Wesley

Publishing Company, 1985..

