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Abstract— A novel Concurrent Error Detection technique for the Fast Fourier Transform 

(FFT) is proposed in this paper. The technique is similar to the conventional Sum of Squares 

(SOS) approach but is of lower computational complexity. Complexity reduction is achieved 

by checking the FFTs of two data blocks in a single calculation. The technique is based on 

checking the equivalence of the results of time and frequency domain calculations of the first 

sample of the circular convolution of the two blocks. In the case of error, the FFTs of both 

blocks must be recomputed. Assuming that errors are rare, this additional cost has negligible 

impact on the average number of operations per block.
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I  INTRODUCTION

Due to decreases in process geometry and 

operating voltage, soft errors are becoming an 

increasingly important problem jeopardizing the 

reliability of digital systems [1]. Digital Signal 

Processing (DSP) systems are among those affected 

by soft errors. A number of techniques have been 

proposed to protect DSP circuits. Algorithm level 

fault tolerant techniques rely on checking the 

numerical properties of the system inputs and outputs 

[2],[3],[4]. Due to its importance in DSP systems, 

several schemes have been proposed for detection of 

errors in the computation of the Fast Fourier 

Transform (FFT) [5],[6],[7].   

One of the most commonly Concurrent Error 

Detection (CED) schemes for the FFT is the  Sum of 

Squares (SOS) check based on Parseval´s theorem 

[2]. The theorem states that the energy, or SOS, of an 

N point sequence, x(n), and its Discrete Fourier 

Transform (DFT), X(k), are equal: 
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This theorem is used to detect errors in an 

FFT computation by computing and comparing the 

SOS of the inputs and outputs of the FFT. If they 

differ then it is assumed that an error occurred in the 

calculation of the FFT and the FFT is re-computed 

and re-checked. In [2], the coverage of the SOS 

method was analyzed in detail showing that it can 

detect most errors in the FFT. For a real sequence, N

real multiplications are needed to perform the SOS 

of the input points and N+2  for the output points as 

the DFT of a real signal needs only N/2+1 values due 

to its symmetry [8]. Therefore 2*N +2 real 

multiplications are needed to implement the SOS 

check. 

In many DSP applications, the FFT is 

computed for multiple consecutive data blocks 

corresponding to different time windows in a long 

sequence [8]. Hence two SOS calculations and one 

comparison must be performed for every block.  This 

is illustrated in Figure 1. 

In this work, a novel scheme for detecting 

errors in FFT implementations is introduced. The 

proposed method uses a single check for pairs of data 

blocks, thus reducing computational complexity.  

Section II describes the proposal in detail. 

The effectiveness of the technique in the two-block 

case is considered in Section III. Section IV 

considers the extension of the proposal to the single-

block case. Section V concludes the paper. 
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Figure 1: Implementation of the Sum Of Squares check on a long signal. 
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Figure 2: Implementation of the proposed technique on consecutive blocks of a long signal. 

II  PROPOSED TECHNIQUE

It is well known that the N-point circular 

convolution, r(l), of two N-point data sequences, 

x1(n) and x2(n), is equal to the Inverse DFT of the 

multiplication of the DFTs, X1(k) and X2(k), of the 

original sequences  [8], that is:  
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where ⊗ denotes N-point circular convolution 

and IDFT[.] denotes the Inverse DFT. 

Herein, we propose that single errors in the 

calculation of X1(k) and X2(k) can be detected by 

comparing the first sample of the circular 

convolution, r(0), as calculated in the time domain 

with that obtained using a frequency domain 

calculation. 

In the time domain, r(0) can be calculated as:  

r ' 0( ) = x1 0( ) ⋅ x2 0( ) + x1(m) ⋅ x2(N −m)[ ]
m=1

N−1

�
     (3) 

Using the frequency domain, r(0) can be 

calculated as: 

r ' ' 0( ) =
1

N
⋅ X1(k) ⋅ X2(k)[ ]
k= 0

N−1

�
              (4) 

since the first element of the Inverse DFT 

output is simply the mean of the input sequence. 

A single error in the calculation of X1(k) or 

X2(k) will cause the condition r’(0)==r’’(0) to be 

false. 

The implementation of the proposed 

technique on an incoming signal is illustrated in 

Figure 2.  



Since multiplication is the most complex 

arithmetic operation used in computation of the FFT, 

the number of multiplications will be used to 

compare the implementation cost of the proposed 

technique with that of the SOS check. For real input 

sequences, the proposed technique requires N real 

multiplications and N/2+1 complex multiplications. 

As complex multiplications can be implemented with 

only three real multiplications [9], the total number 

of multiplications required for the proposed check is 

2.5*N+3. However, these operations check two input 

blocks in a single calculation. So the number of real 

multiplications per input data block is 1.25*N+1.5. 

This compares with the 2*N+2 real multiplications 

needed to perform the SOS check.   

The price paid for the reduced number of 

operations is that when an error is detected, the 

proposed method is not able to determine which FFT 

suffered the error. It may have occurred in the 

computation of either FFT, i.e. X1(k) or X2(k). 

Therefore both FFTs must be recomputed. This 

increases the number of operations required relative 

to the SOS check since, in the SOS case, only one 

block has to be re-computed. However, if we assume 

that errors are a rare event then the average number 

of additional operations per block is negligible. For 

example, if errors occur in 0.01% of FFT 

calculations then 0.02% of checks will detect an 

error, requiring an additional 0.02% of FFTs to be re-

calculated.  

If sufficient memory is available then the 

computational overhead can be reduced by 

comparison of the outputs of the first re-calculated 

FFT with the original results. If the outputs differ, 

and errors are rare events, then it can be assumed that 

a single error occurred in the original calculation of 

the first FFT and that there was no error in the 

original calculation of the second FFT. Based on 

this, the system can proceed without re-calculating 

the second FFT. In the example, this would reduce 

the additional re-calculations to 0.015% of FFTs.  

As with the SOS check, the proposed 

technique has to deal with round-off errors in FFT 

implementation. This can be done by using a 

tolerance level τ in the check, such that small 

differences do not trigger an error: 

r ' 0( ) − r ' ' 0( ) < τ no error

r ' 0( ) − r ' ' 0( ) ≥ τ error
                   (5) 

This approach was considered in detail for the 

SOS check in [2]. 

III  TWO BLOCK EVALUATION

In this section the proposed technique is 

evaluated in terms of fault coverage and complexity. 

a) Fault Coverage 

Matlab simulations were run to test the impact 

of round off error and tolerance levels on the 

proposed scheme. The scheme was used to detect 

errors in FFTs with random data inputs. Soft errors 

were simulated by inserting a single random error in 

each FFT pair at a random location. The input data 

and errors were uniformly distributed in the range -

0.5 to 0.5. A tolerance level of 10
-5

 was used. 

The results for 100,000 simulations are 

provided in Table I for different FFT block lengths. 

It can be observed that good fault coverage is 

achieved in all cases. The same simulations were 

performed using the SOS check and the results are 

shown in Table II. It can be observed that also good 

fault coverage is achieved although slightly lower 

than for the proposed technique. 

Table 1: Fault coverage of the proposed technique 

for different FFT lengths. 

N Fault Coverage (%) 

64 99.93 

128 99.91 

256 99.90 

512 99.86 

1024 99.85 

Table 2: Fault coverage of the SOS technique for 

different FFT lengths. 

N Fault Coverage (%) 

64 99.72 

128 99.70 

256 99.68 

512 99.67 

1024 99.59 

b) Complexity 

As discussed before, the proposed technique 

requires less real multiplications to detect errors than 

the traditional SOS approach, but it requires more 

operations to correct errors since both FFTs have to 

be recomputed. To take this into account, we can 

assume that the probability of an error occurring in 

an FFT calculation is f. The average number of 

multiplications per block can be computed for both 

techniques as:  

)(log
2

32 2 N
N

fNN
SOSmult ⋅⋅⋅+⋅≅

                 (6) 

)(log325.1 2Pr
NNfNN

oposedmult ⋅⋅⋅+⋅≅
       (7) 

In Figure 3, the equations are evaluated for 

N=1024 and various values of f. It can be observed 

that when the probability of error falls below 4% the 

proposed technique is more efficient than SOS. In 

typical applications, the probability of faults in a 

single block calculation is very low and the proposed 

technique would typically only require 1.25/2�0.63 

times the number of multiplications needed in SOS 

check. 
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Figure 3: Comparison of the number of 

multiplications per block. 

IV EXTENSION TO THE SINGLE BLOCK CASE

The proposed technique relies on the 

computation of the FFT over multiple data blocks.  

However it can be extended to cover computation of 

a single block.  

The FFT is commonly implemented using the 

Decimation in Time (DIT) or the Decimation in 

Frequency (DIF) algorithms [8]. In both cases, 

computation of an N point FFT is decomposed into 

computation of two N/2 point FFTs that are then 

combined. Implementations of these schemes are 

illustrated in Figures 4 and 5 for the 8-point case. 

Figure 4: Decimation in Time (DIT) computation of an N 

point FFT. 

Figure 5: Decimation in Frequency (DIF) 

computation of an N point FFT. 

These structures can be used in conjunction 

with the proposed checker. In effect, each N/2-point 

FFT is treated as a block. This ensures that most 

errors occurring in these sub-blocks are detected. 

However, errors in the N/2 multiplications (�
0
, �

1
, 

�
2
, …), outside these blocks, are not detected. To 

detect these errors, the multiplications must be 

duplicated and the outputs compared. This incurs an 

additional cost that makes the technique less  

attractive. In the case of the DIT computation N/2 

additional complex multiplications are needed 

resulting in a cost that exceeds that of the SOS 

technique. The same occurs for the DIF case where 

in addition to the N/2 multiplications, the N/2 point 

DFT at the bottom has now complex inputs which 

also increases the cost. The proposed technique can 

be attractive for a single block when partial coverage 

for error detection is acceptable and the priority is to 

minimize the additional cost. In that case, the 

multiplications can be left unprotected and the total 

cost would be 0.63 that of the SOS check but with a 

reduced coverage for error detection. 

V CONCLUSIONS

A novel Concurrent Error Detection technique 

for FFT implementations has been proposed. The 

technique is similar to the Sum of Squares (SOS) 

approach but can be implemented more efficiently. 

More precisely, less that 63% of the multiplications 

needed to implement the SOS check are sufficient to 

implement the proposed technique when it is applied 

to multiple blocks. When applied to FFT 

computation of a single block the proposed technique 

reduces the cost at the expense of lower fault 

coverage. These cost savings make the proposed 

scheme an interesting alternative to the SOS check to 

detect errors in the computation of the FFT. 
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