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Abstract— A system for soft error detection and correction is 
proposed for digital Integrated Circuit (IC) implementation of 
convolution. The convolution is implemented in a Residue Number 
System using Fermat Number Theoretic Transforms. The flexibility 
afforded by the Modified Overlap Technique in allowing transforms 
of differing lengths in a convolution makes it possible to easily detect 
and correct soft errors by means of a Single Redundant Channel and 
pattern matching technique. The proposed system gives area 
reductions in the majority of cases examined, when compared with 
Triple Modular Redundancy. In the case of large (e.g. 28 and 32 bit) 
word lengths, the proposed system provides area reductions of up to 
30%. 
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I. INTRODUCTION 
HE trend towards small area, high speed and 
low power in computer applications has 

increased the rate of occurrence of radiation induced 
soft errors. Soft errors cause a malfunction of a 
circuit that typically results in a temporary change in 
the logic value of a flip-flop or logic gate. Radiation 
effects have been an issue in space applications for 
decades and are now becoming a concern for many 
ground level applications. The increase in soft errors 
is due to shrinking transistor size and lower power 
voltages that make transistors more vulnerable to 
radiation effects. It is well documented that radiation 
induced soft errors are a major source of malfunction 
in modern computers [1]. For future circuits, it is  
estimated that transistor size and critical charge will 
continue to decrease with process scaling. The 
problem of radiation induced soft errors will 
intensify as a result. A number of techniques have 
been proposed to address the issue of soft errors in 
electronic circuits, ranging from modification of the 
manufacturing process to the design of transistors at 

the physical level to system oriented techniques that 
introduce redundancy to detect and correct soft 
errors when they occur [2]. The most common 
example of the redundancy based techniques is 
Triple Modular Redundancy (TMR) where the 
elements in the system are tripled and majority 
voting is used to correct errors.  Specific redundancy 
based techniques to protect commonly used 
algorithms have also been proposed, for example, in 
the area of signal processing [3]. 

Convolution is one of the most commonly used 
signal processing algorithms. It is widely used to 
implement digital filters where a very long input 
signal is convolved with a short length fixed 
sequence. Convolution in its direct form is a very 
computationally expensive operation. For this 
reason, transform based convolutions are often used 
in practical applications. Typically, convolution is 
realised by calculating the Fast Fourier Transform 
(FFT) of the sequences to be convolved, multiplying 
the outputs element-by-element and calculating the 
Inverse FFT. Number Theoretic Transforms (NTT) 
also have the Cyclic Convolution Property (CCP) 
and can be used for efficient implementation of 
convolution [4]. The main advantage of NTTs over 
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FFTs is that they do not introduce round offs errors 
and so provide exact convolution results, which is 
essential for some applications. 

Surprisingly, fault tolerant techniques for 
transform-based convolution have received little 
attention in the literature.  Clearly, Triple Modular 
Redundancy (TMR) can be applied. More advanced 
approaches, based on the use of Residue Number 
Systems (RNS), have been presented in [5,6,7]. 
These methods require at least two extra, redundant 
RNS (RRNS) moduli in order to detect and correct a 
single fault. The difficulty with these approaches is 
that the redundant moduli significantly increase 
area.   

In this work, we propose a scheme for detection 
and correction of soft errors in NTT-based 
convolutions. The scheme uses a Single Redundant 
Channel (SRC) to compute the convolution in 
parallel with the basic channel and a pattern 
matching technique. The Single Redundant Channel 
is used to detect errors in the convolution output. 
Inspection of the pattern of these errors allows the 
system to determine in which channel the soft error 
occurred. The system then performs correction by 
selecting the output of the channel in which no error 
occurred as the convolution output. The advantage of 
this approach is that only one redundant channel is 
needed, rather than two as in TMR and RRNS. This 
provides a significant area saving relative to these 
approaches. In this work, we compare the area of the 
proposed solution to that of conventional TMR 
applied to the lowest area NTT based convolution. In 
theory, the proposed scheme can detect and correct 
all soft errors in the system. In practice, in some 
case, some errors may not be corrected due to circuit 
level timing issues. These issues are discussed and 
solutions proposed.   

The paper is organised as follows. Section II 
provides background information on NTT and 
RRNS. The proposed fault tolerant convolution 
approach is presented in section III. A complexity 
analysis is provided in Section IV comparing the 
area cost of the proposed approach with TMR. 
Finally, the conclusions from this work are presented 
in Section V. 

II. BACKGROUND 
Convolution is a very computationally expensive 
operation and in its direct form involves 2n  
multiplications. As a means to reduce this 

computational complexity, the Cyclic Convolution 
Property (CCP) of the Fast Fourier Transform (FFT) 
has led to convolutions being performed by means of 
transforms.  A convolution can be realised by getting 
the transform of each sequence to be convolved, 
multiplying the outputs element by element and then 
getting the inverse transform. 

Number Theoretic Transforms (NTT) which 
replace the complex domain with a finite field or 
ring are defined by the relationships:   
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where N is the transform length, ω is the Nth 
primitive root of unity in ZM and all operations are 
carried out modulo M.  For real inputs, NTTs have 
the advantage that the kernels (ω) are integers as 
opposed to the complex roots of unity required for 
the FFT. Thus, use of NTTs results in exact 
arithmetic which eliminates any round off error 

A major problem restricting the use of NTTs is 
the strict relationship between the modulus M, the 
transform length N and the kernel, ω. Another 
consideration is that certain moduli and transform 
length combinations are more suited than others to 
area efficient NTT implementations because 
multiplication by the kernel can be implemented as a 
bit shift and addition.  

 Fermat Number Theoretic Transforms (FNTT) 
are used in this work. Fermat numbers are of the 
form 22  1

t

  where t is an integer [4]. The advantage 
of using Fermat numbers as moduli in NTTs is that 
composite transform lengths of the form 2n are 
available combined with optimum kernels of the 
form 2k, which allow multiplication using shifts.  
Use is also made herein of Generalised Fermat 
Number Transforms (GFNT) of the form 

22 1
k SM   , as described by Toivonen and Heikkila 

[8]. Table 1 provides a full list of the moduli, with 
the related transform lengths and kernels used in 
this work.   

Transform based convolutions use the well-known 
Overlap Add or Overlap Save techniques to convolve 
a short, fixed coefficient sequence with a long data 
sequence. Typically, a single transform is repeatedly 
applied to the incoming data. In [9], Conway showed 
that lower area NTT based convolutions can be 



  

 
Table 1: Moduli M, transform lengths L and kernels  used in the 

proposed system 

 
realised using a Modified Overlap Technique (MOT) 
wherein a number of parallel moduli are used. 
Convolution is performed independently in each 
modulus. The moduli are selected such that they 
form a Residue Number System. The overall 
convolution outputs are obtained by combining the 
parallel moduli results using the Chinese Remainder 
Theorem (CRT). Since this approach allows for 
transform of differing lengths it relieves the word 
length-transform length problem and so reduces the 
area of the system.  
Fault tolerance in RNS has previously been 
implemented using a technique known as Redundant 
Residue Number System  (RRNS). It is defined as an 
RNS with N moduli for the basic non-redundant 
system and r additional redundant moduli for error 
detection [10]. r redundant moduli are required to 
detect and correct [r/2] errors, where [x] is the 
largest integer such that [x]  x, [10].  All N+r 
moduli must be relatively prime and each redundant 
modulus must be greater than the individual non-
redundant moduli.  It is this latter condition which 
causes the provision of redundancy to significantly 
increase area in traditional RRNS. This is not 
required in the proposed technique. 

III. PROPOSED METHOD 
The error detection and correction technique 

proposed herein is based on the idea of adding a 
Single Redundant Channel (SRC) which together 
with pattern matching allows us to detect and correct 
errors. Both the basic and redundant channel 
computes the convolution in parallel as illustrated in 
Figure 1. If the outputs of the two channels are 
different, an error is detected by identification of the 
channel in error by analysis of the error pattern. 
Once the channel in error is known, correction can 
be performed by selecting the convolution output 
from the other channel. 

 

 
Figure 1: Block Diagram of the proposed approach. 
 
The key to the system is the identification of the 

channel in error by pattern matching. We note that 
the NTT has the same structure as the FFT as 
illustrated in Figure 2. Now consider a single 
channel of the convolution system. If a soft error 
occurs in one of the nodes of the forward NTT, the 
error will propagate to at least one of the outputs of 
the NTT and so to all of the outputs of the inverse 
NTT and from there to all Ni convolution outputs, 
where Ni is the length of the transform. Similarly, a 
soft error in the multiplier will give rise to errors in 
all Ni convolution outputs. If the soft error occurs in 
the inverse NTT, a more complex error pattern will 
emerge at the convolution output. Consider, for 
example, a soft error in an 8-point NTT occurring at 
the first input to stage 2. Errors will result at outputs 
X (0), X (2), X (4) and X(6) as shown in Figure 2.  In 
general, for an NTT of length 

 N = 2n  where  n is an integer, a single error at the 
input to a stage g gives rise to r errors with a 
separation s at the output of the NTT where r=N/2g 
and s=2g.  
Consider the mismatch pattern arising from a soft 
error at the input to stage g of the inverse transform, 
where g=0 is the first stage and g=n-1 is the final 
stage. Due to the structure of the inverse transform, 
the number of possible mismatch patterns is 2g, the 
number of mismatches in each pattern is  
2n-g and the separation of mismatches is 2g samples. 
Table 2 illustrates the case where N=16.  

In the proposed approach all channels must have 
different transform lengths Ni. This is made possible 
by the use of the Modified Overlap Technique [9].  
Also, in this work, the most area efficient 
implementation for a given wordlength and filter 
length is found. In some cases this involves multiple 
moduli implemented in an RNS.  The system is 
designed so that each modulus supports a different 
transform length. Therefore, in most cases it is 
possible to distinguish the channel in error based on 
the number of errors and their separation. 

 

M L   M L  
28 + 1 32 23(24-1) 224 + 1 32 27(212-1) 
28 + 1 16 2 224 + 1 16 23 

28 + 1 8 22 224 + 1 8 26 

212 + 1 16 24(26-1) 228 + 1 16 23(2 14-1) 
212 + 1 8 23 228 + 1 8 27 

216 + 1 64 20(28-1) 228 + 1 4 214 

216 + 1 32 2 232 + 1 128 20(216-1) 
216 + 1 16 22 232 + 1 64 2 

216 + 1 8 24 232 + 1 32 22 

220 + 1 16 22(210-1) 232 + 1 16 24 

220 + 1 8 25 232 + 1 8 28 

Input

Redundant
Channel

Basic
Channel

Buffer up to 
Nmax samples

Use error 
pattern to 

select correct 
output

Convolution 
output



  

 
 
Table 2: Mismatch pattern for N=16, n=4. 

 
Soft errors in the forward NTT and multiplier lead 

to a burst of Ni errors with zero separation in the 
convolution output. Soft errors at the input to stage g 
in the inverse NTT of the ith channel lead to Ni/2g 
errors in the convolution output at a separation of 2g. 
Since Ni is unique and a power of 2, the channel in 
error can be identified in all cases by multiplying the 
number of errors and their separation, except for 
those occurring in the final stage of the INTT. Thus, 
the final stages of the INTT are protected by 
applying DMR in one of the channels (redundant or 
non redundant).  

In real circuits, the arrival times of the errors at 
the output of the system, due to a single soft error 
event, will not be exactly the same. In some cases, 
this may mean that, the error pattern differs from 
that predicted by this analysis. The frequency of this 
occurrence depends on the ratio of the duration of 
the soft error and the timing skew between the soft 
error location and the outputs of the circuit. The 
frequency of the occurrence of this problem may be 
reduced by careful design of the circuit. Reducing 
the timing skew between outputs would reduce the 
problem. Registering the outputs of each butterfly 
would eliminate the problem. Alternatively, the 
pattern recognition may be designed so as to be 
robust to the problem. 

Most  soft errors are single bit errors[1].  It is 
assumed in this analysis that only one soft error 
occurs during the computation of a convolution 
transform block. This is a reasonable assumption 
given the frequency of soft errors. The same 
assumption is also implicit in TMR.  

A delay line is used at the output of both channels 
such that the error pattern can be used to identify the 
channel in error and the correct output be selected 
from the other channel. 

The length of the delay line when all Ni are a 
power of two is Nmax/2+1 where Nmax is the largest 
transform length. In all cases, a delay line of length 
Nmax would be sufficient. 

 

 
Figure 2: 8-point radix-2 NTT showing path of error at the input 

to stage 2. 
 
 

 
Figure 3: Block Diagram of a channel. 
 
The overall scheme is illustrated in Figure 1. The 

structure of a channel is similar to the one proposed 
in [9] and it is shown in Figure 3 for the general 
case in which multiple moduli are used in the 
channel. In that case an additional buffering stage 
followed by a reconstruction stage using the Chinese 
Remainder Theorem (CRT) [9] are needed after the 
overlap add stage to compute the convolution. When 
only one non-redundant modulus is used in the 
channel, the CRT logic is not needed. 

IV. COMPLEXITY ANALYSIS 
A Matlab computer program is used to search for 

the lowest area TMR and SRC NTT-based 
convolution systems over a range of word lengths 
and filter lengths.  The conditions to be met in this 
search are that the moduli used cover the required 
wordlength, n; that the transform lengths be greater 
than the filter length Q; that all channels used in a 
particular implementation have different transform 
lengths.  The program also searches for RNS 
combinations of moduli which are more area 
efficient than a single modulus for a given 
wordlength and filter length. In an RNS 
implementation  the moduli used must be relatively 

Stage 
(g) 

Possible 
patterns 

Number of 
mismatches per 
pattern 

Separation of 
mismatches 

0 1 16 1 
1 2 8 2 
2 4 4 4 
3 8 2 8 
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prime.  
The moduli (M), transform lengths (L) and 

corresponding kernels () used in the search are 
given in Table 1. It can be seen that all NTT kernels 
used are either of the form 2k , requiring two 
additions per butterfly, or 2k (2M/2  1), which 
require three additions per butterfly [8]. In the latter 
case, even powers of the kernel are powers of 2 and 
only one stage in an NTT requires odd powers of , 
involving three additions per butterfly. 

The transform length and wordlength in a 
particular channel has implications for the 
complexity of the twiddle factor  as can be seen 
from Table 1. The Matlab program gives the 
combinations which produce the minimum area per 
unit output given the above conditions. 

The areas of the implementations are based on the 
areas of the forward NTTs, multiplication stages and 
the inverse NTTs. It is assumed that the filter 
coefficients are pre-computed. The number of adds 
in the NTT is calculated as the product of the 
number of adds per butterfly, the number of stages 
and the number of butterflies per stage.  

For example, to implement an NTT with modulus 
212 +1 and transform length 16, the kernel, 24(26 - 1) 
is needed. There are 4 stages and 8 butterflies per 
stage but one stage has 3 additions per butterfly and 
three stages have 2 additions per butterfly. This 
gives 318 + 238 = 72 adds for the NTT and a 
total of 144 adds for the convolution together with 
16 multiplications.   

The Gate Equivalent (GE) area for addition 
modulo 2n +1 is 9n/2log2n+n/2+6 [11] and for 
multiplication is 8n2 + n - 2 + the area of one 
addition [12].  The area is calculated on the basis of 
GEs per unit output. Following [9], the area per unit 
output for a channel is calculated as the total area for 
the channel / (N-Q+1), where N is the transform 
length associated with the particular modulus used 
in that channel and Q is the filter length.  

Added to this is the cost of the extra Q-1 additions 
for every N-Q+1 outputs needed for the overlap add 
method. The cost of duplicating the final stage of the 
INTT need only be added to one of channels 
The cost of the voting system for TMR and the cost 
of the logic needed to distinguish the error patterns 
in SRC are not included in this analysis. However, it 
is unlikely that there would be sufficient differences 
to affect the area comparisons. The area 
of conversion to and from RNS is not considered 
since in our system, in instances where RNS is found 

to be the most efficient implementation, it is used for 
both TMR and SRC and therefore does not influence 
the percentage savings The area estimation results 
are shown in Table 3. The percentage column gives 
the percentage saving for Single Redundant Channel 
compared to TMR. The word length, transform 
length couples give the most area efficient 
combination of moduli and transform length for the 
particular word length and filter length.  In the case 
of TMR, two couples indicate that an RNS with two 
moduli is the most efficient implementation. In the 
case of SRC, the moduli and transform lengths are 
given in two columns, one for the basic channel and 
one for the redundant channel 

Consider a word length of 20 bits and a sequence 
of length 27.  In this case, the most efficient 
implementation was found to be the two moduli 
combination of modulus 28 + 1 with transform 
length 32, (8,32) and modulus 216 + 1 with 
transform length 64, (16,64).  This combination is 
used for TMR and as the basic, non-redundant 
channel in SRC. The Chinese Remainder Theorem 
(CRT) is needed in both cases to reconstitute the 
results. Redundancy is provided in the case of SRC 
with modulus 232 + 1 and transform length 128, 
giving three different transform lengths for the 
purpose of pattern matching.  The final stage of the 
INTT is duplicated in the redundant channel. 
Comparison of the basic and redundant outputs will 
determine whether an error has occurred or not. 
 In this example, if an error is detected in the CRT 
reconstituted result from the first two moduli (basic 
channel), we select the third (redundant channel). If 
the error occurs in the third modulus we use the 
CRT reconstituted result from the first two 

As can be seen from Table 3, significant savings 
can be made in many cases, particularly for large 
word lengths. In the case of filter lengths 27 and 31 
with word lengths 12 and 16, the available moduli 
and transform lengths for the proposed system give a 
greater area than that of TMR. This is due to the 
extremely efficient system, modulus 216 + 1 and 
transform length 64, used in the TMR 
implementation in these cases.   

V. CONCLUSIONS 
An efficient soft error tolerant NTT based 
convolution system is proposed. The structure of the 
NTT is used in the design of the system that is 
capable of detecting and correcting up to 100% of 



  

 
Table 3: Area comparisons between TMR and the proposed SRC. 

Q=Filter length; n = wordlength as in 2n +1 ; (n,T/L) = wordlength,  transform length pairs; %=Percentage saving=((TMR-SRC)/TMR) *100 
TMR SRC  

Q 
 

 
n 
  (n,T/L) Area(GE) (n,T/L) Area(GE) 

% 
 

    Basic channel 
Redund-
ant. 
channel 

  

19 12 (16,64) 26,609 (16,64)              (16,32) 22,194 17 
 16 (16,64) 26,609 (16,64) (16,32) 22,194 17 
 20 (8,32)(16,64) 40,326 (8,32)(16,64)   (32,128) 37,980 6 
 24 (8,32)(16,64) 40,326 (8,32)(16,64)   (32,128) 37,980 6 
 28 (32,64) 71,017 (32,64)  (32,128) 49,686 30 
 32 (32,64) 71,017 (32,64)  (32,128) 49,686 30 

23 12 (16,64) 29,229 (16,64)  (16,32) 28,327 3 
 16 (16,64) 29,229 (16,64)  (16,32) 28,327 3 
 20 (8,32)(16,64) 48,575 (8,32)(16,64)   (32,128) 41,867 14 
 24 (8,32)(16,64) 48,575 (8,32)(16,64)   (32,128) 41,867 14 
 28 (32,128) 73,255 (32,64) (32,128) 53,166 27 
 32 (32,128) 73,255 (32,64)  (32,128) 53,166 27 

27 12 (16,64) 32,401 (16,64)  (32,128) 36,969 -14 
 16 (16,64) 32,401 (16,64)  (32,128) 36,969 -14 
 20 (8,32)(16,64) 64,879 (8,32)(16,64)   (32,128) 48,738 25 
 24 (8,32)(16,64) 64,879 (8,32)(16,64)   (32,128) 48,738 25 
 28 (32,128) 76,215 (32,64) (32,128) 57,256 25 
 32 (32,128) 76,215 (32,64) (32,128) 57,256 25 

31 12 (16,64) 36,319 (16,64) (32,128) 39,432 -9 
 16 (16,64) 36,319 (16,64) (32,128) 39,432 -9 
 20 (32,128) 79,417 (32,64) (32,128) 62,158 22 
 24 (32,128) 79,417 (32,64) (32,128) 62,158 22 
 28 (32,128) 79,417 (32,64) (32,128) 62,158 22 
 32 (32,128) 79,417 (32,64) (32,128) 62,158 22 

 
 
isolated soft errors. When compared to TMR, the 
proposed system gives significant area saving in 
most cases examined and up to 30% in the case of 
large bit widths. 

The authors’ future work includes application of a 
modified version of the scheme to FFT based 
convolution systems. This can be done by using two 
FFTs of different lengths for the basic and redundant 
channel and a pattern matching for error correction 
that is similar to the one presented in this paper for 
NTTs. 
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