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Abstract- Logic Soft Errors caused by radiation are a major 

concern when working with circuits that need to operate in 
harsh environments, such as space or avionics applications, 
where soft errors are traditionally referred as Single Event 
Effects. In this paper, system knowledge-based hardening 
techniques using recursive structures for the implementation of 
moving average filters that provide protection against Single 
Event Upsets are evaluated through two fault injection systems 
based on simulation and emulation respectively. Fault injection 
campaigns show that system knowledge-based redundancy 
techniques can achieve the same level of dependability as 
standard redundancy techniques, such as Triple Modular 
Redundancy, while having optimal cost. 

I. INTRODUCTION 

Electronic devices are sensitive to radiation that may 

happen both in the space environment and at the ground 

level. The continuous evolution of manufacturing 

technologies makes integrated circuits more sensitive to 

radiation effects, such as Single Event Upsets (SEUs).  The 

main causes are related to the shrinking coupled with voltage 

scaling and high operating frequencies correspond to 

significantly reduced noise margins, which make circuits 

more sensitive to radiation, as well as to other phenomena 

such as crosstalk or internal noise margins that cause 

transient faults. For these reasons several researchers have 

done investigations both to develop fault-tolerance methods 

in order to mitigate SEUs and to analyze their influence in 

the electronic system deployed for safety or critical mission 

applications.  

Redundancy-based techniques are widely applied to 

provide protection against SEUs effects. These techniques 

use additional hardware components or additional 

computational time to detect the presence of SEUs 

modifying the expected circuit operations and masking SEUs 

propagation to the circuit’s output. When fault masking is 

mandatory, designers may resort to Triple Modular 

Redundancy (TMR) approach. The basic concept of the 

TMR architecture is that a circuit can be hardened against 

SEUs by designing three copies of the same circuit and 

building a majority voter on the outputs of the replicated 

circuit. Hardening a design through TMR implies severe 

overheads since all the hardware logic resources needed for 

the TMR circuitry are triplicated.  

In this paper, the effectiveness against SEUs of hardening 

techniques based on recursive structures are evaluated using 

two different fault injection platforms: a simulation-based 

approach working on a VHDL model of the circuit under test, 

and a new emulation-based fault injection technique able to 

perform injection campaigns in a fraction of time required by 

simulation-based approaches, while still supporting most of 

their positive features.  

The main contribution of this paper is composed of two 

aspects. On one hand, it provides an effective demonstration 

of the fault tolerance capabilities that the system knowledge-

based techniques offer while reducing area overhead versus 

standard TMR techniques. On the other hand, a novel fault 

injection approach using SRAM-based FPGA partial 

reconfiguration is compared with a simulation–based 

approach showing an increasing of the performance of two 

orders of magnitude. 

Experimental results have been executed running several 

fault injection campaigns on different versions of the 

proposed system knowledge-based techniques. The achieved 

results show that the overhead introduced by the proposed 

techniques is reduced versus the standard TMR hardening 

technique, while the same degree of fault tolerance is 

provided. Furthermore, experimental analysis demonstrated 

that emulation-based fault injection has a speed-up better 

than the simulation-based technique. 

The paper is organized as follows. Section 2 presents a 

background on the hardening techniques and fault injection 

platforms previously developed. Section 3 describes the two 

platforms whose results are compared. Experimental results 

about effectiveness and area cost of the evaluated circuit 

against TMR are illustrated and analyzed in Section 4. 

Finally, conclusions and future works are exposed in Section 

5. 

II. BACKGROUND 

The problem of radiation on electronic devices has been 

traditionally addressed in literature. 

A classic reference by J.F. Ziegler is offered in [1], where 

the basic physics of radiation effects is detailed. Different 

rates of errors at several terrestrial positions are described, 

providing a quantitative analysis of the radiation effects. One 

of the factors that measure the sensitivity of circuits to 

radiation is the error rate. Several works try to provide 

models for this error rate, in order to foresee the behaviour of 

the circuit in a particular environment. A Soft Error Rate 

computation algorithm is presented in [2], which can be 

applied to combinational circuits. The parametric waveform 

model is based on the Weibull function. Experiments show 

that the algorithm is linear in the number of nodes, and 

results are close to SPICE simulations. 

A methodology to compute the effects of charged particle 

inducing delay errors (Soft Delay Errors) is presented in [3]. 

The different node sensitivity is computed in order to 
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employ node hardening techniques, and therefore, increase 

the reliability of CMOS circuits. Techniques to detect and 

correct errors are very common too. The goal of such 

techniques is to mitigate the effects of radiation, both by 

detecting errors when they happen, and by trying to correct 

them, thus getting rid of the negative effect. In [4], the 

problem of Concurrent Error Detection (CED) is discussed 

in Burst-Mode machines. An enhanced duplication process 

is proposed in order to give a solution to this problem, 

showing an interesting saving in hardware. A technique to 

minimize the impact of soft errors in circuits is presented in 

[5]. Through the use of complementary pass transistor 

devices, those gates affected by SEUs are isolated, and 

therefore their negative effect is removed. This is achieved 

with limited area, delay and power overheads.  

In the memory research field, a new BIRA (built-in-

redundancy-analysis) algorithm is presented in [6], in order 

to allocate 2D redundancy using 1D local bitmap. The 

proposed experiments offer a high repair rate, close to the 

existing optimal algorithms. In [7], the problem of sub-65nm 

designs is described. Since it is stated that classical fault-

tolerance techniques for soft error detection are expensive, a 

recently developed Built-In-Soft-error-Resilience (BISER) 

technique is proposed, which seems effective for soft error 

blocking or detection. When the validation of the 

effectiveness of electronic circuits hardening techniques 

against SEUs is considered, several approaches should be 

mentioned.  

Several works have already explored the use of FPGAs for 

speeding-up fault injection of permanent faults [8][9]. In [10] 

the extension to the injection of transient fault is proposed, 

where an instrumented model of the system under analysis is 

exploited. Although very efficient in reducing the CPU time 

needed for evaluating high numbers of faults, it mandates the 

introduction of fault-injection-oriented features in the model, 

and therefore it cannot be exploited in those applications 

where intellectual property (IP) cores coming from third 

parties are used, for which the model’s source code is not 

available.  

The authors of [11] and [12] proposed alternative 

approaches to inject faults while emulating the system using 

FPGA devices, where partial reconfiguration is employed to 

perform the injection of SEUs. The most important benefit 

stemming from these approaches is that the source model of 

the system under analysis is not needed, while only a netlist 

suitable for being placed in an FPGA is required. On the one 

hand, the intellectual property of the IP core is preserved; on 

the other hand, the SEE analysis is performed on the very 

same model that will be deployed in the final system, 

differently from [11] where the model has to be changed to 

insert the fault-injection-oriented features. The major 

drawback of [12] is the speed: being based on JBits [14] and 

on a slow communication interface between the board 

carrying the emulated system, and the host computer 

managing the experiment, the number of faults that may be 

injected is quite limited. The authors reported that about 100 

msec are needed for injecting, and classifying the effect of 

one SEU.  

The major drawback of [13] is the portability: a specific 

custom-developed board is needed to perform fault injection. 

The system is very time-efficient (44 msec are needed for 

injecting and classifying the effect of one SEU), but it may 

be quite expensive to implement. 

III. OVERVIEW ON THE FAULT-INJECTION PLATFORM 

In this section, the descriptions of the SEUs simulation 

and emulation platforms used to study the effectiveness of 

the electronic circuits are exposed. 

A. Simulation-based platform 

The purpose of this platform [15] is to help designers to 

predict and explore potential weak points on ICs sensitive to 

hazards in the early design cycles without the need of 

developing a prototype. It can also be used to assess the 

effectiveness of a given protection technique. The platform 

is composed of the SST simulator developed by the ESA 

Data Systems Division and Matlab. A commercial HDL 

simulator (i.e. ModelSim) is used to run the simulations. For 

a given circuit under test, we would generate a number of 

testcases in terms of the corresponding input and output data 

using Matlab. We would also generate a number of test 

configurations in terms of the soft errors inserted using the 

SST. The testcases would be designed to fully test the circuit 

functionality and performance while the test configurations 

would ideally reflect the soft error environment that is 

expected for the device operating conditions. Then, 

combinations of both can be easily tested by just selecting 

the appropriate input and output data files and test 

configuration file. In fact, with a simple script, the testing of 

all relevant combinations can be easily automated. 

As it can be seen in figure 1 three independent modules 

make up the platform. 
 

 

 

 

 
 

 

 

 

 

Fig. 1 Scheme of the Simulation-based platform used 

 

1. SEUs Simulation Tool (SST): This component consists 

of a set of modules used to prepare the environment to 

generate soft errors in both sequential and 

combinational logic.  

2. HDL Simulator: This module is in charge of holding 

the circuit to test, and performing a simulation at the 

design stage. The description of the environment is 

divided into two parts: the circuit and the test bench. In 

particular, the test bench will produce the different test 

scenarios for the circuit (based on the input values 

provided by the Matlab module), will capture the 

circuit outputs, and will compare them with the 

expected results (also provided by Matlab). In case both 

are different, that will indicate an error, which will be 

logged in the system for further study. This 
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environment is generic (independent of the circuit 

behaviour) for circuits devoted to signal processing (or 

at least a significant part of them). It is also flexible in 

the way that it is straightforward to generate different 

input signals to test the circuit operating in several 

environments. For other kinds of circuits (e.g., 

controllers), another application rather than Matlab 

would be designated to hold the golden data. 

3. Matlab: This module compares the theoretically correct 

behaviour of the system with the actual outputs 

produced by the HDL simulator. It has the advantage 

that the Matlab code does not need to reflect the actual 

circuit implementation, it only needs to be functionally 

equivalent. This facilitates the use of a single Matlab 

model to explore different implementation alternatives. 

The difference between both behaviours will indicate 

the presence of a SEU, what will trigger the mechanism 

to detect the source of such an error.  

B. Emulation-based platform 

The emulation-based platform is composed of the 

following modules: a host computer; an FPGA board 

equipped with a Virtex II-Pro device, and a serial 

communication link to the host computer. The host computer 

is primarily used for configuring the Virtex-II Pro and for 

the generation of a fault location list. However, during the 

execution of the fault injection experiment, its only purpose 

is to provide a user-friendly interface to run the fault-

injection experiments and to collect the results in terms of 

fault-effect classification. 

 

 

 

 

 

 

 

 

 

Fig. 2 Architectural-diagram of the emulation-based fault injection 

approach 

The FPGA board is the core of the fault-injection system 

and its layout is depicted in Fig. 2. It is composed of four 

components interconnected by an On-chip Peripheral Bus 

(OPB): 

• Timing Unit: it drives the UUT clock and reset. The 

clock of the UUT has the same frequency of the FPGA 

device layout. A port connected to the OPB Bus defines 

its functionality. 

• Unit Under Test (UUT): it is the circuit under test and it 

may consist of an IP core and an own memory. The IP 

core’s input and output ports are connected to the OPB 

Bus while the reset and clock signals are connected to the 

Timing Unit.  

• ICAP: it is the Internal Configuration Access Port 

provided by last generations of Xilinx FPGAs. It allows 

the access to the FPGA configuration memory through an 

internal port in order to perform partial reconfiguration 

without the support of an external hardware. For the 

purpose of this work, we configured the ICAP in such a 

way that it is able to access to all the memory elements 

(such as Flip-Flops or Latches) of the UUT IP core.  

• PowerPC microprocessor: it is hardwired in the FPGA 

device and it has two functionalities. At first, it performs 

the fault injection of SEUs within the memory elements 

of the UUT IP core through the execution a fault-injector 

algorithm. Latter, it communicates the fault-injection 

experiment results to the host computer through a serial 

communication link.  

The serial communication link is supported by a RS-232 

cable that connects the FPGA board to the host computer. 

The execution phase of the used fault injection approach is 

performed by several procedures included within the fault-

injector algorithm as illustrated in the Figure 3. 

 

Fig. 3 The emulation-based fault injection algorithm 

The algorithm is executed by the PowerPC and it consists 

of three parts: pre-running, campaign and fault injection 

results. The Pre-running starts the fault injection experiment. 

At first, it loads within the PowerPC memory the test 

patterns that will be applied to the UUT and initializes the 

UUT IP memory (i.e. if the IP core is a processor the UUT 

IP memory will be loaded with the desired program). 

Secondly, it performs a golden run of the UUT storing the 

total number of Clock Cycle (CC) and the Golden Output 

(GO) produced. The Campaign performs the fault injection 

of the selected number of faults (NF). The following steps 

are executed for the injection of each SEU:  

1. The procedure reset_UUT() resets the UUT and 

configures the Timing unit in such a way that it sends a 

reset to the UUT. 

2. A fault injection time (FT) and a fault location (FL) are 

randomly selected considering the number of clock cycle 

CC and the set FL available. 

3. The procedure run_UUT(FT) stars the execution of the 

UUT until the clock cycle FT is reached. This operation 

is performed by configuring a Timing Unit’s terminal 

counter at the FT value.  

4. The procedure read_value(FL) reads the value of the 

fault location FL. This procedure reads directly the 

content of the flip-flop or latches from the configuration 

memory through the usage of the ICAP port. 

5. The procedure Inject_SEU (FL,!Value) partially 

reconfigures the bitstream of the FPGA writing  the 

opposite value within the content of the flip-flop or 

latches identified by FL. Therefore a SEU is injected in 

the considered fault location.  

/*Pre-running*/ 

FI_initialization()
{CC,GO}=Golden_Run_UUT()
/*Campaign*/ 

for number of injected faults NF 
{
reset_UUT()
{FT,FL} = random (CC,FL) 
run_UUT(FT) 
Value= read_value(FL) 
Inject_SEU(FL,!Value) 
FCL=monitor_UUT(CC,GO) 
} 
/*Fault Injection Results*/ 

communication_host(FCL)
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6. The procedure monitor_UUT(CC,GO) continues the 

execution of the UUT until CC is reached. During the 

execution, it monitors the UUT output ports reading the 

data on the RS-232 interface and comparing their value 

with the UUT golden outputs. It finally updates a fault 

classification list (FCL) with the results obtained by the 

fault injection and classifying each injected SEU as silent, 

if the output produced by the UUT are equal to the GO; 

wrong answer, if a mismatch was detected. 

When the fault injection campaign is concluded, the 

PowerPC communicates the fault injection results to the host 

computer returning the FCL through the procedure 

communication_host (FCL). 

IV. EXPERIMENTAL RESULTS 

In this section, we first give an overview of the evaluated 

system knowledge-based techniques based on FIR filters 

used to compare the protection effectiveness  results 

provided by the simulation and emulation-based platforms. 

Finally, fault injection results are presented and commented. 

A. The case study: system knowledge-based hardening 

techniques 
To come up with optimal Single Event Effects (SEEs) 

protection techniques, we need to take the requirements of 

the application in which the circuit is used into account. For 

the specific case of moving average filters in recursive form, 

the case study of this paper, a further explanation of the 

protection techniques tested can be found in [16]. These 

developed techniques offer a set of possible alternative 

solutions to TMR and they are specifically designed for 

moving average filters.  

Moving average filters are one special type of FIR filter 

which shows some interesting properties for implementation 

and they are used in many applications such as industrial 

controls or automotive. They perform the following 

operation [16]. 

                   �
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ny                          (1)            

Where x[n] is the input signal, y[n] the output and N is the 

number of input samples that are processed each time to 

compute each y[n] sample and, normally, its value is a power 

of two, so that the division can be implemented with a shift 

operation. In this case, the filter needs only adders.  

A more efficient implementation can be derived by 

rewriting (1) as follows:   

])[][(
1

]1[][ Nnxnx
N

nyny −−+−=                   (2) 

In this case, only two adders are needed irrespective of the 

value of N. In fact, this implements the FIR filter using an 

Infinite Impulse Response (IIR) structure.   

A first look at the effect of SEUs on both structures shows 

that in the case of the more efficient IIR implementation, 

SEUs in the delay line or in the accumulator can cause errors 

in the output that will persist until the filter is reset. 

Therefore, SEEs can influence the choice of the 

implementation structures for digital filters, and suggests the 

interest of smart protection techniques. Depending on the 

application requirements a number of protection techniques 

have been proposed in [17]. 

The first one consists in adding protection through a 

decimated filter. If the application can tolerate occasional 

errors on the output of the filter, the computation of the 

output can be done in parallel by another structure added to 

the filter, for the sake of comparison. Obviously, if this 

added structure is a replica of the filter itself, we would be 

doubling the complexity of the system. To avoid this 

situation, this parallel structure will be implemented with a 

decimated filter, which has a structure simpler than a regular 

filter, with the drawback that it only computes the right 

output one out of N cycles. 

The second scheme consists in adopting a double parity 

architecture. One alternative to using TMR in all registers 

consist of computing a two-dimensional parity, where for 

each input value and each bit position it is computed a parity 

on two bits. These two sets of parity bits, form the 

accumulated parity of the circuit, which is constantly being 

updated. Dynamically, each time a new value reaches the 

circuit, this parity bits are re-checked and compared with the 

accumulated values. Therefore, single SEUs will be 

undoubtedly identified and corrected [17]. 

B. Fault Injection Results 
In this section we present the experimental results 

obtained from the fault injection campaigns on several 

version of a FIR filter implemented with IIR structure (see 

Eq, 2).  

Four different FIR filters have been implemented: 

1. IIR_Basic: it is the plain version of the Infinite Impulse 

Response filter. 

2. IIR_RedTec: it is the FIR Filter hardened using a 

decimated filter. 

3. IIR_SystemKnowledge: it is the FIR Filter hardened 

adopting a two-dimensional parity architecture. 

4. IIR_TMR: it is the FIR Filter hardened adopting standard 

Triple Modular Redundancy (TMR). 

In order to compare the simulation-based versus the 

emulation-based fault-injection we synthesized the circuits 

using an ASIC and FPGA –oriented synthesizers. 

The characteristics of the implemented FIR Filters on the 

SRAM-based FPGA are illustrated in Table I where the 

number of used Flip-Flops (FFs), Slices and Look-Up Tables 

(LUTs) are reported. The recursive solutions developed need 

less resources than the standard TMR technique. In 

particular, the IIR_SystemKnowledge technique drastically 

reduce the number of needed FFs while introducing a 

minimal overhead of used LUTs. 

TABLE I 

FPGA-BASED SYNTHESIS CHARACTERISTICS OF THE IMPLEMENTED FIR 

FILTERS 

Circuit Slices  

[#] 

FFs  

[#] 

LUTs [#] 

IIR_Basic 82 140 43 

IIR_RedTec 108 158 212 

IIR_SystemKnowledge 178  196 287 

IIR_TMR 290 420 260 

 

The equivalent results in terms of FFs and total gates 
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obtained using an ASIC synthesizer with a 0.25µm TSMC 

library are shown in Table II. As it can be noticed, the 

number of FFs is exactly the same as the one obtained for the 

FPGA-based synthesis. Moreover, the area overhead 

introduced by the recursive solution is drastically reduced if 

compared with the standard TMR technique.  

TABLE II 
TSMC 0.25 µM AND 50-MHZ SYNTHESIS 

 

In order to implement the emulation-based fault injection 

platform described in section 3.2, we used a Xilinx Virtex-II 

Pro Platform SRAM-based FPGA [18] embedding a 

PowerPC 405 [19]. The fault injection campaigns have been 

performed injecting randomly SEUs within the FFs used by 

the circuits. The workload for each injection was of 1,000 

input stimuli.  

TABLE III 
FAULT GRADING 

Circuit 
Injected 

SEU 

Wrong  

Answers  

Golden 

Outputs  

IIR_Basic 50,000 50,000 0 

IIR_RedTec 50,000 21 49,979 

IIR_SystemKnowledge 50,000 0 50,000 

IIR_TMR 50,000 0 50,000 

 

The obtained fault classification is shown in Table III, 

where the number of injected faults and the fault grading are 

reported. It can be noticed that the IIR_SystemKnowledge 

solution provides complete protection against SEUs affecting 

FFs of the delay line, as the TMR solution. Comparing this 

results with the ones obtained using software-based fault 

injection (see [16] for more details) the next points can be 

concluded: 

For the RedTec protection technique, the average cycles 

used for the filter to correct its behavior after the SEU 

injection is around 16 cycles. 

For the SystemKnowledge Technique, the filter is 100% 

effective againts SEUs, similar to TMR.  

We have contrasted the emulation-based fault injection 

platform with the SST simulator tool [15] in order to double-

check the efficiency of the protection techniques and 

compare the results obtained with both fault injection 

platforms.  

 The SST tool corroborates the protection efficiency 

obtained with the emulation-based platform, what proves 

that the different redundancy techniques are valid.  

Since the results from the two platforms are similar and 

comparable, we can conclude that any of them could be used 

to perform a fault injection analysis of a given system. As a 

time estimation, the developed emulation platform needs, on 

average, 3.95msec versus 671msec of the SST simulation-

based approach. 

 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have evaluated the fault tolerance 

capabilities of recursive-oriented hardening techniques 

versus the standard Triple Modular Redundancy (TMR) 

technique, using two different fault injection platforms: a 

simulation-based approach working on a software model of 

the circuit under test and a novel emulation-based fault 

injection approach. Experimental results demonstrated that 

the system knowledge-based redundancy techniques may 

achieve the same level of fault tolerance as the standard 

TMR approach while optimizing the circuit area overhead. 

Furthermore, as the protection effectiveness results from the 

two platforms give similar conclusions, it could be 

extrapolated that the two fault injection platforms are equally 

useful in order to perform fault injection analysis on any 

given type of systems, although an initial time comparison 

puts in perspective that hardware emulation is faster than 

software simulation. 

As future work we plan to investigate the fault tolerance 

capability of recursive-oriented techniques applied on 

SRAM-based FPGAs when affected by SEUs within their 

configuration memory. 
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