
Learning and Reasoning

Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, OR 97331

May 26, 2003

Abstract

What is the relationship between learning and reasoning? Much recent work in machine learning
has been criticized for focusing on learning and ignoring reasoning. This paper attempts to
describe the various ways in which machine learning research has (and has not) incorporated
reasoning. The paper argues that there are important computational, statistical, and engineering
constraints that have produced the current state of affairs. These reasons are reviewed and
assessed in the light of future research directions.

1 Introduction

Open a textbook on machine learning, and the first task description that you will see there is
the task of supervised classification (Hastie, Tibshirani, & Friedman, 2001; Duda, Hart, & Stork,
2000). The goal of learning is to construct a classifier—that is, a function f that takes as input a
description x of an object and outputs the class label y for the object. To achieve this goal, the
learning algorithm is given a set of training examples, each of the form (xi, yi). This simple task
has many applications (ranging from optical character recognition to face recognition to disease
diagnosis), and it forms the basis of many commercial applications of predictive data mining.
Nonetheless, students of artificial intelligence, psychology, and philosophy find this learning task to
be distant from the kinds of learning that people engage in daily, and while they are impressed by
the range of practical applications, they don’t see how supervised classification relates to the larger
goal of building broadly-intelligent systems. Where, in particular, is the reasoning?

This paper attempts to answer this question and discuss its implications for future learning
reseach.

2 Learning for an Agent

Figure 1 shows the more-or-less standard model of an agent that is typically adopted in artificial
intelligence research. The agent consists of a knowledge base and an inference engine, and it
operates in a loop. In each iteration, it receives input in the form of observations of the environment
(e.g., sensors), instructions (e.g., goals and/or utility functions), and queries. The inference engine
carries out reasoning to answer the queries and to choose actions to execute in the environment.
This reasoning process is driven by the data structures in the knowledge base.

Within this model, it is natural to focus learning on the contents of the knowledge base. Indeed,
this is the primary justification for separating out the knowledge base from the inference engine. The

1

Knowledge
Base

Engine
Inference

Observations
Instructions
Queries

Actions
Answers

Environment

Figure 1: The Standard Model of an Agent

inference engine is kept fixed, and learning (or knowledge engineering) modifies only the knowledge
base.

There are many kinds of knowledge that are typically represented in the knowledge base:

• ontologies (which define the kinds of objects that exist in the world and the attributes they
possess),

• relationships (which define how objects and attributes are related; these can take the form of
hard constraints (people have no more than 2 legs) or probability distributions (the height of
Caucasian men in North America follows a normal distribution with a mean of 176cm),

• goals and utilities (which define desirable and undesirable states of the world and states of
the agent), and

• policies, control rules, and heuristics (which prescribe ways of acting).

A “first principles” approach to agent design concentrates on the first three categories of knowl-
edge: ontologies, relationships, and utilities. Given these, a sufficiently-powerful inference engine
can infer optimal outputs (actions and answers). For example, consider the task of medical diagno-
sis. A patient with an illness visits a doctor. The doctor must choose a sequence of actions (queries,
medical tests, attempted therapies) to diagnose the disease and heal the patient. This sequence of
actions can be computed if the doctor knows the possible costs and effects of each potential action,
the probabilistic relationships among all possible diseases and symptoms (including the results of
queries, tests, and therapies), and the goals/utilities of the patient (e.g., preference for quality of
life versus length of life). In short, the problem of choosing agent actions can be solved purely by
reasoning given a sufficiently complete knowledge base and a sufficiently powerful inference engine.
In this first-principles view, the role of learning is to learn the relevant ontologies, relationships,
and utilities.

2

There are two well-known weaknesses of the first-principles approach. First, it is often compu-
tationally infeasible to perform the necessary inferences, particularly within the time constraints
required for action in the world. Second, learning (or manual knowledge engineering) is an error-
prone process, so the knowledge base will not be complete or correct. To be robust, the agent must
take into account the uncertainty of the learned (or hand-encoded) knowledge when performing
inferences and choosing actions.1

An alternative to relying on inference to choose actions is to store policies, control rules, and
heuristics in the knowledge base and to use these for action selection. A policy is a function
that maps directly from inputs (e.g., observations of the world) to actions. One can view policies
as “cached” results of first-principles inference, but in many application problems, it is easier to
describe the policy than it is to articulate the underlying ontological and relational knowledge
sufficient to allow an inference engine to infer the policy. So the knowledge base may contain
manually-engineered (or automatically-learned) policies that cannot be inferred (or explained) by
the declarative knowledge in the knowledge base. Control rules and heuristics are bits of knowledge
that constrain and guide the inference engine so that it arrives at the correct conclusions more
efficiently. They typically incorporate knowledge of the task, the knowledge base, and the inference
engine to prune unnecessary inferences and prioritize promising ones.

How does machine learning relate to this agent architecture? Most work on machine learning
has centered on learning policies rather than declarative knowledge. Hence, as the critics point out,
machine learning has avoided the need for an inference engine (and it has avoided the computational
cost of reasoning). Even in cases where machine learning has studied learning declarative knowledge,
it has learned knowledge only for very simple inference engines. There are many reasons for this.
First, the machine learning community has focused on end-to-end performance, and this naturally
leads to an emphasis on learning policies whose end-to-end performance can be directly evaluated
(i.e., without dealing with an inference engine). Second, there is a statistical component to machine
learning. Consequently, the inference engine must be probabilistic, and probabilistic inference is
more costly and more complex than logical inference. Third, machine learning has studied only
the simplest form of experience for learning: pairs of input observations and output actions. It
has (for the most part) not exploited richer inputs such as natural language queries, explanations,
instructions, and so on. There are severe statistical limitations to what can be learned from
input-output pairs alone. A rough rule of thumb is that the number of input-output pairs needed
for learning scales as the log of the size of the hypothesis space. In the case of rich first-order
representations for ontologies and relations, the hypothesis space can be immense. There are
22n

boolean functions over n variables, so just learning boolean functions requires an exponential
amount of data in the worst case. And boolean functions are not nearly as expressive as the kinds
of languages used in modern knowledge bases!

3 Analysis of Existing Learning Approaches

Let us now analyze several lines of research in machine learning in terms of our agent model. We
first consider the problem of classification and describe a series of approaches that start by learning
a simple one-shot classification policy for classifying single objects and end up with methods that
learn a declarative knowledge base that relates thousands of individuals and relies on complex
reasoning methods. Then we consider the problem of sequential decision making and describe a
range of approaches beginning with methods that learn policies and ending with methods that learn

1Note, however, that many expert systems do not take this into account, which is one of the sources of their
brittleness.

3

declarative knowledge from which policies can be constructed.

3.1 Learning for Classification

The standard task of supervised learning is to learn a decision-making policy for “one-shot” clas-
sification tasks. In the one-shot classification task, the agent receives an input observation (e.g.,
age, body temperature, weight, height, blood count, strep test, etc. describing a patient) and must
make a single decision (e.g., classify as “strep throat” versus “common cold” versus “healthy”).
Each patient is assumed to be independent of the next, and the goal is to maximize the probability
of correctly classifying a patient’s disease. The reader should consider what is not included in this
task. The agent makes only one decision rather than a sequence of decisions—for example, deciding
which tests to perform, trying various therapies. The agent classifies each patient separately—that
is, rather than looking for trends across patients (e.g., today, most of the patients have had a cold).

Many classification algorithms can be viewed as learning a propositional boolean formula that
describes the classes. For example, the CN2 algorithm (Clark & Niblett, 1988) learns a decision list,
which is a list of boolean conjunctions which are evaluated in order until one is satisfied. The FOIL
algorithm (Quinlan, 1990) extended this to first-order logic. The AQ family of algorithms (Michal-
ski, 1983) learn propositional or first-order disjunctive normal form formulas. Decision tree algo-
rithms learn propositional (Quinlan, 1993) decision trees that constitute a compact representation
of a DNF formula. Finally, several researchers have studied methods for learning propositional and
first-order Horn clause programs, including recursive logic programs (Muggleton, 1992; Richards
& Mooney, 1995). All of these methods require a run-time inference engine ranging in complexity
from a simple evaluator of boolean formulae to an evaluator of pure prolog. It is important to note
that all of these algorithms are learning classification policies rather than declarative knowledge.

There are several ways in which machine learning research has relaxed this simple one-shot
classification task. The first relaxation is that instead of learning a classifier f(x), the system
learns a conditional probability estimator P (y|x). An advantage of this approach is that at run
time, the patient (or doctor) can specify a cost matrix C(ŷ, y) which specifies the cost of classifying
the disease as ŷ when the true disease of the patient is y. This allows the patient to say, for example,
that a false negative diagnosis (of strep) is 10 times more serious than a false positive diagnosis.
With this utility information, the agent can choose the classification that minimizes the expected
cost:

ŷ = argmin
k

∑
y

P (y|x)C(k, y). (1)

Here, the sum over y considers each of the possible true diseases, computes the probability that
this is the true disease (according to P (y|x)), and then weights this by the cost of making decision
k when the true disease is y.

Equation 1 can be viewed as an extremely simple inference engine, but this approach is the first
step in making the learned knowledge P (y|x) declarative rather than just learning a classification
policy. It allows the cost matrix to be input at run time rather than being specified at learning
time.

Machine learning research has taken additional steps toward learning declarative knowledge.
One approach is to learn the joint distribution P (x, y) of the patient symptoms x and the disease
y. This joint distribution is typically represented by some form of Bayesian network. The simplest
such network is the Naive Bayes network shown in Figure 2. Here, the disease node y generates each
of the observed symptoms x1, . . . , xn. Each symptom is assumed to be conditionally independent
given the disease. Figure 3 shows a not-so-naive Bayesian network for diabetes. We can interpret
this causally as saying that age and number of pregnancies influence body mass, and all three of

4

y

x1 x2 x3 xn

Figure 2: The Naive Bayes network

Diabetes

Insulin

Glucose

Age Preg

Mass

Figure 3: A Bayesian network for diabetes disease

these factors influence the probability of diabetes. Diabetes in turn influences the level of blood
insulin, and, in combination with insulin, the level of blood glucose.

Given this representation of the joint distribution P (x, y), we now require a more powerful
inference engine to make diagnostic decisions. The inference engine must compute P (y|x) and then
apply the minimum expected cost formula (equation 1) to make decisions. An important accom-
plishment of research in probabilistic reasoning is the development of general-purpose inference
engines for this task (Jensen, 2001).

Recent research has taken an additional step in complexity by considering the simultaneous
prediction of multiple patients via probabilistic relational models. Figure 4 shows a relational
Bayesian network learned automatically using a system developed by Getoor, Friedman, Koller,
and Pfeffer (2001) for tuberculosis. Rather than describing a single patient, this model describes
a whole set of 1300 patients as well as 2300 people with whom they have been in contact and
the various strains of TB that they may be infected with. This kind of network could be used to
predict the strain of TB of a patient based on properties of the patient such as their age, ethnicity
and HIV status but also based on the strains of TB carried by other people with whom they have
been in contact. In order to make such a prediction for a new patient, nodes and links for that
patient must be added to the network and then an inference engine must compute the probability
of each TB strain given all of the information stored in the rest of the network. This inference
problem is quite challenging, but current research in probabilistic reasoning has developed several
good approximate reasoning strategies (Murphy, Weiss, & Jordan, 1999).

5

hivres

contacts

result

transmitted

infectivity

smrpos

care

closecont

ageatdx

closecont

hh_oohh

ethnic

 # infected

% infected

hh_oohh

contype

homeless

gender

contype

disease site

contage

xray

pob

�������������

�	
����

������

Figure 4: Probabilistic relational model (taken from Getoor, et al., 2000) of tuberculosis patients.

3.2 Learning for Sequential Decision Making

The methods discussed above focus on assigning a class to one or more individuals. These classes
are assigned at a single time step—there is no consideration of making a sequence of decisions over
time. We now consider this problem of sequential decision making.

The subarea of machine learning known as “reinforcement learning” studies the following prob-
lem (Sutton & Barto, 1998). At each time step t, the agent observes the current state xt of the
environment. The agent has available a set of actions A, and at each time step, it must choose
one of these actions a ∈ A to execute. When the chosen action at is executed, the environment
makes a transition to a new state xt+1 according to the probability distribution P (xt+1|xt, at). The
environment also provides a real-valued reward rt. The agent can then observe the resulting state
xt+1 and choose a new action. The goal of the agent is to learn a policy π for choosing actions in
order to maximize the expected long term sum of rewards.

Reinforcement learning research has explored three main approaches to solving this problem:
(a) model-free policy search, (b) model-free value function learning, and (c) model-based learning.
Model-free policy search starts with an initial policy πθ (typically represented as a neural network
with weights θ) and makes small changes to this policy after each interaction with the environment
in order to improve the policy. These changes are based on estimating the derivative of the long-
term expected reward with respect to θ and then changing θ in the direction of increasing reward
(Williams, 1992; Baxter & Bartlett, 2000). A disadvantage of these methods is that they are very
slow to learn a good policy. An advantage is that the policy can be computed very efficiently, so
the agent can choose each action at in constant time. This gives good real-time performance in
applications such as controlling autonomous helicopters (Ng & Jordan, 2000).

The second approach to sequential decision making is the model-free value function method.
This approach learns a data structure known as the action-value function, which is denoted as Qπ.
The action-value function assigns a value Qπ(x, a) to each state x and action a. This value is the

6

expected long term reward of starting in state x, executing action a, and then selecting future
actions according to a particular policy π. It is known that the optimal policy π∗ must satisfy the
Bellman equation:

Qπ∗
(x, a) =

∑
x′

P (x′|x, a)
[
R(x, a,x′) + max

a′ Qπ∗
(x′, a′)

]
, (2)

where R(x, a,x′) is the average value of the reward received when executing action a in state x and
making a transition to x′. The model-free method known as Q-learning updates the action-value
function Q after each interaction with the environment (Watkins, 1989).

Given the optimal Q function, a simple inference engine can compute the optimal policy as
follows:

π∗(x) = argmax
a

Q(x, a). (3)

Hence, model-free value-function methods take a small step away from having no inference engine.
(Indeed, equations 2 and 3 are the multi-step analogues of equation 1, which was a simple step
away from direct classification.)

A much more significant step is taken by model-based reinforcement learning methods. These
methods view each interaction with the environment as providing a four-tuple 〈x, a, r,x′〉 of data.
From this four-tuple, these methods learn a declarative representation (referred to as a “model”)
of the transition function P (x′|x, a) and the expected reward function R(x, a,x′). The model can
take the form of tables for each of these quantities, or it can take other forms such as Bayesian
networks. In any case, once the model has been learned, an inference engine can be applied to
compute the optimal policy (and/or the optimal action-value function). The inference engine is
usually based on the value iteration and policy iteration dynamic programming algorithms.

A limitation of all three of these approaches is that in most real-world problems, the space
of possible states x is very large, and these algorithms typically require time that scales as the
cube of the number of states. Hence, much recent research has focused on methods that construct
computationally manageable approximations of the policy, value function, and model.

3.3 Declarative Methods versus Direct Methods

In both classification and sequential decision-making, methods that combine declarative knowledge
with inference engines have several advantages. For example, the algorithms for learning Bayesian
networks typically require time linear in the number of examples, whereas methods for learning
classifiers directly (e.g., support vector machines, neural networks), are slower by several orders of
magnitude. Model-based methods for reinforcement learning require many fewer training experi-
ences than model-free policy and value function methods (Moore & Atkeson, 1993). Declarative
methods in general allow the goal, utility function, or reward function to be changed at “inference
time”, whereas direct methods require that these be known at “learning time.” Finally, declara-
tive knowledge structures are much easier for people to understand, which makes them easier to
validate. Why then do researchers and practioners often prefer model-free methods?

There are at least four reasons. First, declarative methods must make some assumption about
the form of the joint probability distribution P (x, y) or the transition distribution P (x′|x, a). In
contrast, direct methods make fewer assumptions about the nature of the joint distribution. Con-
ditional methods that only learn P (y|x), for example, make no assumptions about the distribution
of the x values. If the assumptions made by declarative methods are wrong (which they always are
to some extent), then the inference engine may give results that are worse than those produced by
the direct methods. This has been documented in several studies (e.g., Ng & Jordan, 2002).

7

Second, direct methods require no run-time reasoning, so they are easier to implement and they
are faster at run time.

Third, there is a substantial body of psychological evidence showing that human skill takes the
form of direct decision-making policies rather than run-time inference over declarative knowledge
structures (e.g., Lee & Anderson, 1997). There is also evidence that declarative descriptions of
this knowledge (e.g., as observed in verbal reports from human subjects) is reconstructive and not
effective for problem solving.

Fourth, while declarative methods do not require knowledge of the task for which the learned
knowledge will be used, they cannot exploit such knowledge if it is available. In contrast, direct
methods can optimize their learning to address the task (Greiner, Grove, & Schuurmans, 1997).
Consider learning a Bayesian network of the joint distribution P (x, y). Learning algorithms for
this task try to find the network that best explains the data, which means best explaining both
the x and the y values. But if the goal of learning is to predict y given x, it is not necessary to
explain the x values during learning.2 Indeed, sometimes models of P (x, y) end up deciding that
y is independent of the x values (even in cases where this is not true). This produces a Bayesian
network that is useless for predicting y given x (Friedman, Geiger, & Goldszmidt, 1997). A direct
method can ensure that this does not happen.

A fifth reason may be that virtually all machine learning systems are constructed and trained to
perform only a single task. Given this focus, there is no benefit to factoring the learned knowledge
into separate chunks that must then be recombined (e.g., by backward chaining or resolution) at
run time to make inferences. If the learned knowledge were constructed in factored form, then this
inference would need to be performed many times during the learning process, which would be
slow and provide little benefit. Instead, a single (possibly very large) structure—such as a decision
tree—is created that performs the task directly. It is interesting to note that the applications of
machine learning exhibiting the most run-time inference are precisely those where there is a payoff
to factoring the learned knowledge into reusable chunks (e.g., Richards & Mooney, 1995).

3.4 Probabilistic Inference Engines

All of the inference engines described above perform probabilistic reasoning. Elsewhere in artificial
intelligence, inference engines perform logical reasoning. Why is there so little logical reasoning in
machine learning?

Before answering this question, it is important to note that its premise is not quite true. As
mentioned above, there are many algorithms that construct logical rules, and these do not require
a probabilistic inference engine at run time. However, these are not declarative methods—they are
learning direct decision-making policies and representing them as logical rules. Hence, it is generally
correct to say that existing learning algorithms do not learn declarative knowledge represented in
logic.

The reason that probabilistic inference is adopted is that it gives more accurate results. Con-
sider, for example, the problem of speech recognition. The standard approach to speech is to learn
declarative knowledge in the form of a hidden Markov model (HMM) that models P (s, y), the joint
distribution of the speech signal s and the sequence of words y (Jelinek, 1999). At run time, this
learned knowledge is employed by a probabilistic inference engine, the Viterbi algorithm, to deter-
mine the most likely sequence of words given the observed speech signal. The Viterbi algorithm is
normally executed using a beam search that keeps track of the top N word sequence hypotheses as
it scans the speech signal. These hypotheses are sorted by their posterior probabilities. However,

2Technically, this is the difference between maximizing the joint likelihood of the model m, P (x, y|m), and maxi-
mizing the conditional likelihood, P (y|x,m).

8

if N is set to 1, then the Viterbi algorithm is equivalent to a propositional inference engine that
irrevocably assigns the most likely word at each step given the corresponding segment of the speech
signal. This gives significantly worse results than N > 1. We see in this case that logical inference
gives worse results than probabilistic inference.

To understand this point more deeply, it is important to consider that learned knowledge is
typically noisy and incorrect. Machine learning algorithms work from a set of training data, which
is only a statistical sample of the full space of all possible cases. Hence, learning is a statistical
process, and errors are inevitable. Probabilistic reasoning can partially recover from these errors.
The Viterbi algorithm, for example, can find the correct word sequence even in cases where one of
the correct words got a low score locally.

One alternative to probabilistic reasoning is provided by ensemble methods where multiple
classifiers are constructed, non-probabilistic inference is performed for each classifier, and the results
are combined (e.g., by voting) to produce a final decision. Like probabilistic reasoning, ensemble
methods can recover from the statistical uncertainty of any particular classifier.

One form of logical inference that is common in expert systems is inference within a concept
hierarchy. For example, people and cats are mammals, mammals and fish are animals, and so
on. The reader might expect that in very complex classification problems, it would make sense
to do some form of inheritance reasoning (e.g., learning that all mammals have hair and therefore
not having to learn separately that people have hair and cats have hair). This is certainly true
in general, but in the applications that have been studied so far, the concept hierarchy has been
exploited in a different way. McCallum, Rosenfeld, Mitchell, & Ng (1998) studied the problem of
classifying web pages into a topic hierarchy similar to Yahoo. They found that the best approach
was to learn a classifier that “flattened” the hierarchy by only considering the leaves. However,
their approach used the parent nodes in the hierarchy to “shrink” the probabilities of different leaf
classes “toward” one another. As an example, consider the problem of estimating the probability
of having hair given that you are a human, P (hair|human) and the probability of hair given that
you are a cat, P (hair|cat). Cats are more likely to have hair than people (e.g., because people may
be bald, may shave, etc.), so these probabilities are not the same. But these probabilities are more
similar than P (hair|salmon). In the training data, you may have only a few examples of humans
and cats, which makes it hard to learn these probabilities accurately. You can learn them better
if you partially pool the data by forcing the estimates of P (hair|human) and P (hair|cat) to be
closer to each other because they are both subclasses of mammal. This gives better results than
either learning P (hair|mammal) or ignoring the hierarchy.

3.5 Summary

In response to the question, “Where is the reasoning?”, I have argued that machine learning systems
have explored a spectrum of methods ranging from purely direct methods (that require no reasoning
at run time) to purely declarative methods (that require extensive, often probabilistic, reasoning
at run time). I have argued that while there are many advantages to combining learned declarative
knowledge with inference engines, there are also significant reasons why direct methods often out-
perform declarative ones. Finally, I have discussed the question of the relative paucity of run-time
logical reasoning and emphasized the importance of probabilistic inference for good performance.

4 New Directions for Research in Learning and Reasoning

Machine learning poses a challenge to traditional research on reasoning and knowledge represen-
tation. The challenge is this: Are the logical representation and reasoning methods developed in

9

artificial intelligence at all useful when combined with learned knowledge? It is conceivable that
the requirements and properties of learning (probabilistic representations and inference, statisti-
cal considerations such as shrinkage) may render logical representation and reasoning methods
irrelevant.

However, existing high-performance systems based on traditional reasoning and knowledge rep-
resentation pose an even greater challenge for machine learning. The challenge is this: How can
machine learning automatically construct systems of similar high performance? It is conceivable
that the methods developed to date in machine learning are irrelevant to the construction of these
high-performance systems!

4.1 Challenge: Learning for high-performance inference engines

Let us consider the problem of scheduling. Scheduling systems typically employ inference engines
based on constraint satisfaction or logical satisfiability. An advantage of AI-based scheduling meth-
ods is that they provide very expressive languages for representing constraints while still support-
ing efficient scheduling and re-scheduling (Zweben, Daun, & Deale, 1994). However, a tremendous
amount of effort goes in to manually entering and maintaining the knowledge base of constraints,
and new types of constraints are encountered from time-to-time that require extending the con-
straint language (and possibly the inference engine). The challenge for machine learning is to
replace this manual entry and maintenance with a more autonomous approach.

The key issue in formulating this as a machine learning problem is to determine what kinds of
information will be available to the learning system. One possibility would be to show the learning
system examples of schedules constructed (or repaired) by people. Another possibility would be
to allow people to provide natural language explanations of their scheduling decisions (or of what
they don’t like about the schedules constructed by the computer). In either case, the goal of the
learning system would be to infer the classes of activities, resources, prerequisite constraints, and
preferences that are consistent with the example schedules and the human-provided explanations.

I believe that our current stock of machine learning methods will require major changes to be
able to handle learning from new, richer kinds of inputs. Conversely, the limitations of our current
methods (e.g., to classification and sequential decision making) may reflect limitations in the kind of
training data we have available. Removing or changing these limitations could have revolutionary
consequences for learning research.

4.2 Challenge: Learning in support of multiple tasks

As discussed above, virtually all machine learning applications focus on a single task, and this may
explain why these systems do not learn factored, declarative knowledge. An interesting challenge
for machine learning research would be to learn knowledge useful for multiple tasks. For example,
consider the challenge of learning simultaneously how to diagnose faults in a system (e.g., a com-
puter network) and also how to optimize the performance of the system. Presumably, there is a
shared core of knowledge about the structure and behavior of the system that could be learned and
represented declaratively. In addition, there would perhaps be direct knowledge learned separately
for diagnosis and for optimization.

Attempts to perform multiple tasks using the same knowledge base have encountered difficulties
in the past. For example, when attempts were made to use the MYCIN knowledge base (which
had been developed for diagnosis) to provide good explanations and to support intelligent tutor-
ing, researchers found that the knowledge base needed to be substantially revised (Buchanan &
Shortliffe, 1984).

10

4.3 Challenge: Learning from rich background knowledge and small samples

In many applications, there is a rich store of background knowledge available but rather small
amounts of training data. This background knowledge could be easily represented using the ex-
isting knowledge representation tools. A challenge for machine learning is to develop methods for
combining this background knowledge with the data to make decisions. There are three points at
which the background knowledge could be incorporated into the learning and reasoning process: (a)
in formulating the learning problem, (b) in constraining the learning process, and (c) in reasoning
after learning. We explore each of these in turn.

4.3.1 Formulating the learning problem

Most machine learning applications succeed as a result of careful “feature engineering”—that is,
careful design of the input features provided to the learning algorithm. In many cases, this pro-
cess involves extensive reasoning by the data analyst. For example, in a project with Waranun
Bunjongsat, I studied the problem of predicting grasshopper infestations in eastern Oregon. The
available data consisted of 50 years of adult grasshopper population maps and daily weather data
from about 75 weather stations. To learn from this data, we studied the life cycle of the grasshop-
pers to derive features that we thought would be useful for making the predictions. The grasshopper
life cycle goes through three phases. Eggs are laid in the soil in late summer. The eggs mature
underground until they hatch (typically in May). The grasshopper nymphs emerge and start eat-
ing (especially farmers’ crops). Then as adults, they find mates and eggs are laid again. Before
hatching, the eggs are largely insulated from weather events, although the temperature of the soil
determines the rate of maturation. After hatching, cold weather can kill many of the nymphs.

To predict next year’s grasshopper population, we need to know the number of eggs laid, the
hatching date, and the weather after hatching. We need to learn the quantitative relationship
between the weather and population losses. We cannot observe the number of eggs, but we know it
is proportional to the number of adults, so we can use the number of adults as a proxy variable. We
cannot observe hatching date, so we need to infer it. To infer it, we need to know soil temperature,
but we cannot observe that. We can assume that it is proportional to air temperature, which
we can observe. We know the maturation process is monotonically related to warm soil, so we
can assume that hatching date can be predicted by comparing the number of degree days for air
temperature (relative to some fixed level, say, 40◦F) against a threshold θ. We know that hatching
typically happens in May, so we can calibrate θ so that our predicted hatching dates are in May.
Finally, we know that nymph deaths will be related to the duration and severity of the cold spells
after hatching, so we can define the length of a cold spell in terms of a temperature threshold and
define the severity by the minimum temperature during the spell. In our work, we hand-coded
programs to extract these features and then provided them as input to a regression tree algorithm
that estimated the adult grasshopper population (with very modest success). But we would have
liked to have a system in which we could represent this background knowledge explicitly and then
automatically or semi-automatically infer the relevant features. Such a system would provide a
form of documentation for the feature engineering process. It might also improve the process by
finding better features.

4.3.2 Constraining the learning process

The second role for background knowledge is to constrain the space of hypotheses considered by
the learning algorithm. A nice example of this is the work by Clark and Matwin (1993) in which
they applied a qualitative model of a factory to constrain the CN2 rule learning system to ensure

11

that the rules produced by CN2 were consistent with qualitative causal pathways in the model.
Recently, there has been considerable attention on incorporating other kinds of constraints including
monotonicity constraints (Bayardo, 2002) (e.g., that severity of disease increases monotonically with
exposure to a toxin).

The general problem of incorporating background constraints into learning is very difficult. It
is eased considerably if the learned knowledge is declarative, because then it reduces to the problem
of preventing or detecting contradictions between learned knowledge and background knowledge.
But for direct machine learning methods (policies, classifiers, etc.), it is much harder to relate
the results of learning to the prior knowledge. This is an additional reason to prefer declarative
representations.

4.3.3 Inference after learning

The third role for background knowledge is to perform inferences after learning. In part, this may
be necessary if the knowledge could not be “compiled in” to the input features or the learning
algorithm. The background knowledge can be applied to censor or veto bad decisions made by
the learned policy. But more generally, if the goal is to combine learned knowledge with prior
knowledge within the inference engine, then this will presumably impose additional constraints
on the learning process and the representations involved. For example, to assess the quality of a
proposed knowledge structure during learning, it might be necessary to provide the structure to the
inference engine and see how well the engine was able to solve the overall task. Observed problems
would need to be propagated back through the inference paths to the knowledge structure to guide
repair.

5 Concluding Remarks

This paper has reviewed the issues relating learning and reasoning in artificial intelligence. Much
work in learning has pursued “direct” forms of knowledge that can be applied without any sub-
sequent inference. However, over the past few years, the limitations of the direct approach have
pushed machine learning researchers to study more declarative forms of knowledge. Virtually all
of this work employs probabilistic representations and probabilistic inference engines. Examples of
this work include probabilistic relational models and model-based reinforcement learning.

Future research along this trajectory will study methods for learning ever-more-complex prob-
abilistic models and for solving the accompanying probabilistic inference problems. But there are
limits to what can be learned exclusively from a practical number of input/output training exam-
ples. One important direction for future research is to study problems with richer input information
(e.g., explanations in natural language). Another important direction is to find ways of combining
prior knowledge with reasonable amounts of training data to support complex, high-performance
inference engines.

Acknowledgements

This research was funded by DARPA under seedling funds for the Knowledge Plane program. The
author thanks Pat Langley, Ray Mooney, and Prasad Tadepalli for their critical reading of the
manuscript.

12

References

Baxter, J., & Bartlett, P. L. (2000). Reinforcement learning in POMDP’s via direct gradient ascent.
In Proc. 17th International Conf. on Machine Learning, pp. 41–48. Morgan Kaufmann, San
Francisco, CA.

Bayardo, R. J. (2002). Special issue on constraints in data mining. SIGKDD Explorations, 4 (1).

Buchanan, B., & Shortliffe, E. (1984). Rule-Based Expert Systems: The Mycin Experiments of the
Stanford Heuristic Programming Project. Addison-Wesley.

Clark, P., & Matwin, S. (1993). Using qualitative models to guide inductive learning. In Machine
Learning: Proceedings of the Tenth International Conference, pp. 49–56 San Francisco, CA.
Morgan Kaufmann.

Clark, P., & Niblett, T. (1988). The cn2 induction algorithm. Machine Learning, 3, 261.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification, Second Edition. John
Wiley and Sons, Inc.

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning,
29, 131.

Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models.
In Relational Data Mining. Springer-Verlag.

Greiner, R., Grove, A. J., & Schuurmans, D. (1997). Learning Bayesian nets that perform well.
In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI–97), pp. 198–207 San Francisco, CA. Morgan Kaufmann Publishers.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Verlag, New York.

Jelinek, F. (1999). Statistical methods for speech recognition. MIT Press.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. Springer-Verlag, New York.

Lee, F. J., & Anderson, J. R. (1997). Learning to act: Acquisition and optimization of procedural
skill. In Proceedings of the 19th Annual Conference of the Cognitive Science Society, pp.
418–423 Mahwah, NJ. Lawrence Erlbaum.

McCallum, A., Rosenfeld, R., Mitchell, T., & Ng, A. (1998). Improving text classification by
shrinkage in a hierarchy of classes. In Proceedings of the Fifteenth International Conference
on Machine Learning San Francisco. Morgan Kaufmann.

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Michalski, R. S.,
Mitchell, T. M., & Carbonell, J. (Eds.), Machine Learning: An Artificial Intelligence Ap-
proach, Vol. 1, pp. 83–134. Morgan Kaufmann.

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less
data and less time. Machine Learning, 13, 103.

Muggleton, S. (1992). Inductive logic programming. In Muggleton, S. (Ed.), Inductive Logic
Programming, pp. 3–27. Academic Press, New York, NY.

13

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Ar-
tificial Intelligence (UAI–99), pp. 467–475 San Francisco, CA. Morgan Kaufmann Publishers.

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Dietterich, T. G., Becker, S., & Ghahramani, Z. (Eds.),
Advances in Neural Information Processing Systems 14 Cambridge, MA. MIT Press.

Ng, A. Y., & Jordan, M. I. (2000). Pegasus: A policy search method for large mdps and pomdps.
In Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI-2000),
pp. 405–415 San Francisco, CA. Morgan Kaufmann Publishers.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5 (3), 239–266.

Quinlan, J. R. (1993). C4.5: Programs for Empirical Learning. Morgan Kaufmann, San Francisco,
CA.

Richards, B. L., & Mooney, R. J. (1995). Automated refinement of first-order horn-clause domain
theories. Machine Learning, 19, 95.

Sutton, R., & Barto, A. G. (1998). Introduction to Reinforcement Learning. MIT Press, Cambridge,
MA.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, King’s College, Oxford.
(To be reprinted by MIT Press.).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8, 229.

Zweben, M., Daun, B., & Deale, M. (1994). Scheduling and rescheduling with iterative repair.
In Zweben, M., & Fox, M. S. (Eds.), Intelligent Scheduling, chap. 8, pp. 241–255. Morgan
Kaufmann, San Francisco, CA.

14

