Arboles de decisión

Teoría de la decisión

- Hemos estudiado las redes bayesianas como instrumento para el diagnóstico en presencia de incertidumbre.
- La idea ahora es aprovechar ese diagnóstico para decidir sobre el tratamiento a realizar
- En realidad estudiaremos la toma de decisiones en presencia de incertidumbre.

Valor esperado

- Nuestro punto de partida es el concepto de valor esperado, aplicable a variables aleatorias que toman valores numéricos.
- Intuitivamente el valor esperado es el promedio de los valores que se obtendrían al realizar el experimento un número muy grande de veces.
- Es decir, es el valor al que tiende el promedio.

$$E[X] = ?_x x^* P?x?$$

∠ Cuando todos los valores son igualmente probables el valor esperado es simplemente el promedio de los valores posibles, pues si hay n valores P(x)=1/n y por lo tanto

$$E?X?=?_{x}x^{*}\frac{1}{n}$$

Utilidad esperada

- Si cada valor representa un beneficio o una pérdida podemos considerarlo como una **utilidad**; cuanto más positiva es la utilidad, mayor es el beneficio, y cuanto más negativa es mayor es el perjuicio.
- Por lo tanto da una medida para tomar decisiones: elegiremos la opción que tenga mayor utilidad (*principio de máxima utilidad*)
- En general, si la utilidad es función de una variable aleatoria X, la utilidad esperada viene dada por:

$$UE = ?_{x} U ?x?^{*} P ?x?$$

De este modo la teoría de la probabilidad nos conduce a la teoría de la decisión.

Utilidad esperada

- Existen dos enfoques en cuanto a la consideración de la utilidad:
 - Algunos afirman que el mejor juego era aquél que tuviera el mayor valor económico (*principio de la esperanza matemática*)
 - Bernouilli (1738) introdujo el término de utilidad como la satisfacción que experimenta un sujeto al recibir unan ganancia o una pérdida, distinguiendo así entre valor (objetivo) y utilidad (subjetiva).
 - Esto hace que distintas personas tengan actitudes diferentes ante el riesgo: unas personas están más dispuestas a arriesgarse en cuestiones dominadas por el azar, mientras que otras hacen todo lo posible por evitar el riesgo.

Diagramas de influencia

- Análogamente a lo que ocurre con las redes bayesianas, un diagrama de influencia viene dado por un grafo y unas tablas.
- En el grafo pueden aparecer tres tipos de nodos:
 - ✓ Variables aleatorias, que se representan por círculos
 - Decisiones, que se representan por cuadrados o rectángulos
 - ∠ Utilidad, que se representan por rombos.
- Cada nodo aleatorio lleva asociado una tabla de probabilidad condicional dados sus padres (que pueden ser tanto aleatorios como de decisión)

Diagramas de influencia

El significado de cada enlace viena dado por la naturaleza de los nodos que une:

Destino/Origen	Variable aleatoria X	Decisión D1
Variable aleatoria Y	X influye causalmente de forma directa sobre Y	La decisión D1 influye directamente sobre Y
Decisión D2	Al decidir D2 se conoce ya el valor que ha tomado X	La decisión D1 se toma antes que D2
Utilidad U	El valor que toma X influye directamente en la utilidad	La decisión D1 inluye directamente en la utilidad

Arboles de decisión

Se compone de:

- Un nodo raíz, que puede ser aleatorio o de decisión
- Cada nodo (excepto el nodo de utilidad) tiene varios hijos, uno por cada valor de la variable asociada al nodo
- Gráficamente el nodo raíz se representa a la izquierda, y los hijos de cada nodo a la derecha de su padre, siguiendo un orden temporal en las acciones; por tanto los nodos de utilidad aparecen en el extremo de la derecha.
- Los nodos aleatorios se representan por círculos, y los de decisión por cuadrados.
- Los enlaces que parten de un nodo aleatorio X llevan asociada una probabilidad condicional P(x|izq(x), donde izq(x) representa los valores que toman los nodos situados a la izquierda de X en el árbol.

De un diagrama de influencia a un árbol de decisión

Para representar un árbol de decisión se deben seguir las siguientes reglas:

- Regla 1: A la derecha del todo debe aparecer el valor de la utilidad para cada rama.
- Regla 2: Si la Decisión D1 se toma antes que D2, el nodo D1 debe aparecer a la izquierda del nodo D2.
- Regla 3: Las variables cuyo valor se conoce antes de tomar la decisión D, han de aparecer a la izquierda del nodo D en el desarrollo del árbol; las que no se conocen al decidir D, apqrecerean a la derecha.
- Regla 4: De las dos reglas anteriores se deduce que, si el valor de la variable X se conoce después de la Decisión D1 y antes de la D2, el nodo X debe aparecer entre D1 y D2.

Evaluación de un árbol de decisión

- La evaluación de un árbol de decisión se realiza siempre de derecha a izquierda.
- ∠ La utilidad asociada a cada rama y a cada nodo se calcula teniendo en cuenta que:
 - ∠ La utilidad correspondiente a un nodo aleatorio X en el árbol de decisión es el promedio de todas las ramas que parten de X, ponderado por la probabilidad (recordemos que hay una rama por cada valor x de X):

$$U_x$$
? izq ? x ??= ? $_x$ U ? x | izq ? x ??* P ? x | izq ? x ??

- La utilidad correspondiente a un nodo de decisión D es el máximo de las utilidades de sus ramas
 - La decisión óptima para este nodo es el valor D correspondiente a la rama de mayor utilidad.

$$U_D$$
? izq ? d ?? $= max_d U$? $d | izq$? d ??