Programming in KeTCindy with Combined Use of Cinderella and Maxima

Setsuo Takato

Toho University,Japan
2018.06.20 ACA

This work was supported by JSPS KAKENHI Grant Number 16K01152.

Producing Class Materials

Printed Materials with $\mathrm{K}_{\mathbf{E}} \mathrm{TCindy}$

- Math teachers often distribute printed materials to their alumni.
- For such materials, figures presented as line drawings are better suited.
- Because students can write their own remarks over them on the paper.
- $K_{E T C i n d y ~ c a n ~ p r o d u c e ~ f i n e ~ f i g u r e s ~ f o r ~}^{A} T_{E} X$.

Printed Materials with K_{E} TCindy

- Math teachers often distribute printed materials to their alumni.
- For such materials, figures presented as line drawings are better suited.
- Because students can write their own remarks over them on the paper.
- $\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}$ can produce fine figures for $\mathbb{I A T}_{\mathrm{E}} \mathrm{X}$.

Printed Materials with KETCindy

- Math teachers often distribute printed materials to their alumni.
- For such materials, figures presented as line drawings are better suited.
- Because students can write their own remarks over them on the paper.
- K_{E} TCindy can produce fine figures for $\mathrm{A}_{\mathrm{E}} \mathrm{X}$.

	\triangleleft	\triangleright	$\triangle 1$	>11

Printed Materials with $\mathbf{K}_{\mathbf{E}} \mathbf{T C i n d y}$

- Math teachers often distribute printed materials to their alumni.
- For such materials, figures presented as line drawings are better suited.
- Because students can write their own remarks over them on the paper.
- $\mathrm{K}_{\mathbf{E}} \mathbf{T C i n d y}$ can produce fine figures for $\mathrm{E}_{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

18	1	\triangleleft	\triangleright	$\triangle 1$	明		

$\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}=\mathrm{K}_{\mathrm{E}} \mathrm{Tpic}+$ Cinderella

- We have developed $\mathrm{K}_{\mathbf{E}} \mathrm{Tpic}$, a macro package of mathematical softwares, as an easy drawing tool for $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.
- Cinderella is a dynamic geometry software developed by Gebert and Kortenkamp.
- We had been exploring the possibility of using Cinderella as the GUI of KETpic.
- KETCindy was released on 2014.

$\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}=\mathrm{K}_{\mathrm{E}} \mathrm{Tpic}+$ Cinderella

- We have developed $\mathrm{K}_{\mathbf{E}} \mathrm{Tpic}$, a macro package of mathematical softwares, as an easy drawing tool for $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.
- Cinderella is a dynamic geometry software developed by Gebert and Kortenkamp.
- We had been exploring the possibility of using Cinderella as the GUI of K_{E} Tpic.
- $\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}$ was released on 2014.

$\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}=\mathrm{K}_{\mathrm{E}} \mathrm{Tpic}+$ Cinderella

- We have developed $\mathrm{K}_{\mathbf{E}} \mathrm{Tpic}$, a macro package of mathematical softwares, as an easy drawing tool for $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$.
- Cinderella is a dynamic geometry software developed by Gebert and Kortenkamp.
- We had been exploring the possibility of using Cinderella as the GUI of $\mathrm{K}_{\mathbf{E}} \mathbf{T p i c}$.
- K_{E} Cindy was released on 2014.

$\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}=\mathrm{K}_{\mathrm{E}} \mathrm{Tpic}+$ Cinderella

- We have developed $\mathrm{K}_{\mathbf{E}} \mathrm{Tpic}$, a macro package of mathematical softwares, as an easy drawing tool for $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$.
- Cinderella is a dynamic geometry software developed by Gebert and Kortenkamp.
- We had been exploring the possibility of using Cinderella as the GUI of $\mathrm{K}_{\mathrm{E}} \mathrm{Tpic}$.
- K_{E} TCindy was released on 2014.

	W	

Contribution of CindyScript

- CindyScript(CS) is the programming language of Cinderella.
- Codes of K_{E} TCindy are written with CS.
- Cindy (=Cinderella) screen is used :
to put geometric elements,
to decide the area for $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ drawing,
to confirm the figure beforehand.

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\triangleright \\|$

Contribution of CindyScript

- CindyScript(CS) is the programming language of Cinderella.
- Codes of $\mathrm{K}_{\mathbf{E}}$ TCindy are written with CS.
- Cindy(=Cinderella) screen is used :
to put geometric elements,
to decide the area for $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ drawing,
to confirm the figure beforehand.

$\|\forall\| ~$	\triangleleft	\triangleleft	\triangleright	$\Delta 1$	$\Delta \\|$

Contribution of CindyScript

- CindyScript(CS) is the programming language of Cinderella.
- Codes of $\mathrm{K}_{\mathbf{E}}$ TCindy are written with CS.
- Cindy (=Cinderella) screen is used :
to put geometric elements,
to decide the area for $\mathrm{ET}_{\mathbf{E}} \mathrm{X}$ drawing,
to confirm the figure beforehand.

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$

Example of printed materials

Ex) Solve the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+5 y=0
$$

$\triangle \mid 1 / 1$

Cindy Screen and Scripts

－ 1 －迢 $|\mathrm{ABC}| f(x) \mid Z_{t}$

マウスをドラッグして自由要素を動かす

／Users／takatoosetsuo／ketcınay
fig already exists
／kc．sh executable

Free Placement of Figures

We can arrange figures at any position on the paper.
\begin\{layer\}\{120\}\{0\} }
\putnotese\{58\}\{17\}\{\input\{fig/deq1.tex\}\}
\end\{layer\} }

Materials with Presentation Slides

- $\mathrm{K}_{\mathbf{E}}$ TCindy has a function, KeTslide, to produce slides for presentation with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$.
- For math materials, expressions and proper figures are of fundamental importance.
- KeTslide can be handled easily, so will be suitable for usual mathematics teachers.
- Anime and Flip Anime are also available.

$\|\mid \nabla$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$	$1 / 4$

Materials with Presentation Slides

- $\mathrm{K}_{\mathbf{E}} \mathbf{T C i n d y}$ has a function, KeTslide, to produce slides for presentation with $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
- For math materials, expressions and proper figures are of fundamental importance.
- KeTslide can be handled easily, so will be suitable for usual mathematics teachers.
- Anime and Flip Anime are also available.

$\|1\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$	$2 / 4$

Materials with Presentation Slides

- $\mathrm{K}_{\mathbf{E}} \mathbf{T C i n d y}$ has a function, KeTslide, to produce slides for presentation with $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
- For math materials, expressions and proper figures are of fundamental importance.
- KeTslide can be handled easily, so will be suitable for usual mathematics teachers.
- Anime and Flip Anime are also available.

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$

Materials with Presentation Slides

- $\mathrm{K}_{\mathbf{E}} \mathbf{T C i n d y}$ has a function, KeTslide, to produce slides for presentation with $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
- For math materials, expressions and proper figures are of fundamental importance.
- KeTslide can be handled easily, so will be suitable for usual mathematics teachers.
- Anime and Flip Anime are also available.

$\|1\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright \\|$

Example 1 of Flip Anime

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l||l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \perp & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \perp & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline|\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline|\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \boxed{\prime} \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline|\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \| \triangleleft & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline|\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta\|\mid$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| & 11 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l||l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta \mid & \triangleright \mid 12 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle \\|$

Example 1 of Flip Anime

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l||l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle \\|$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| & 17 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\|\triangleleft\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\Delta\|\mid$	$18 / 45$

Example 1 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| & 19 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| & 20 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline \mid \forall \| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline 1 / 45
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline \mid \forall \| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline 2 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l||l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta \mid & \triangleright \| \\
\hline 10
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|l|}
\hline \mid \forall \| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| & 24 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline \mid 1 \triangleleft & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \Delta \| \\
\hline 10 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| & 26 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangle \mid$	$\triangle \\|$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle \\|$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle \\|$

Example 1 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright\|\mid$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle\|\mid$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline|\mid \triangleleft & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \triangleright \| \\
\hline 2 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$

Example 1 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| & 34 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

Example 1 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle\|\mid$

Example 1 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta\|\mid$

Example 1 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangle\|\mid$	$39 / 45$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l||l|}
\hline|\mid \triangleleft & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \Delta \| \\
\hline 10 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta\|\mid$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l||l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline|\mid \triangleleft & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \triangleright \| \\
\hline 13 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta \mid & \triangleright \| \\
\hline 4 / 45 \\
\hline
\end{array}
$$

Example 1 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright 1 \mid & 45 / 45 \\
\hline
\end{array}
$$

Example 2 of Flip Anime

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| & 2 / 26 \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$\|\forall\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$
$1 / 26$					

Example 2 of Flip Anime

$\|\forall\|$	\neg	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$
$10 / 26$					

Example 2 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$

Example 2 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta\|\mid$

Example 2 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$

Example 2 of Flip Anime

$\|\|\exists\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\Delta \\|$

Example 2 of Flip Anime

Example 2 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright \\|$	$16 / 26$

Example 2 of Flip Anime

$\|\mid ~$	\triangleleft	\triangleleft	\triangleright	$\triangle 1$	$\triangle \\|$

Example 2 of Flip Anime

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright 1 \mid$
$18 / 26$					

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \Delta \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \Delta \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline 22 / 26 \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l||l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \triangleright 1 & \triangleright \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

$$
\begin{array}{|l|l|l|l|l|l|}
\hline||\triangleleft| & \triangleleft & \triangleleft & \triangleright & \Delta 1 & \Delta \| \\
\hline
\end{array}
$$

Example 2 of Flip Anime

> | $\|\|\triangleleft\|$ | \triangleleft | \triangleleft | \triangleright | $\triangleright 1$ | $\triangleright \\|$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Example 2 of Flip Anime

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline|\mid \triangleleft & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright \| & 26 / 26 \\
\hline
\end{array}
$$

Usage of JS files

- CindyJS can create interactive content for the web.
- K_{E} TCindy has enhanced the functions for math classes.
- The file size is small.

$\mid 1 \triangleleft$	\triangleleft	\triangleleft	\triangleright	$\triangleright \mid$	$\triangleright\|\mid$	$1 / 3$

Usage of JS files

- CindyJS can create interactive content for the web.
- K_{E} TCindy has enhanced the functions for math classes.
- The file size is small.

$\|\forall\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright \\|$

Usage of JS files

- CindyJS can create interactive content for the web.
- K_{E} TCindy has enhanced the functions for math classes.
- The file size is small.

Example of Interactive Materials

$13 / 18$

Materials with 3D figures

3D Figures by $\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}$

- $\mathrm{K}_{\mathbf{E}}$ TCindy supports line drawing of 3D figures.

$$
\begin{array}{|l||l|l||l|l|l|l}
\hline \mid \forall & \triangleleft & \triangleleft & \triangleright & \triangleright \mid & \triangleright|\mid & 1 / 2 \\
\hline
\end{array}
$$

3D Figures by $\mathrm{K}_{\mathrm{E}} \mathrm{TCindy}$

- $\mathrm{K}_{\mathbf{E}}$ TCindy supports line drawing of 3D figures.
- These figures are suitable for printed materials

Steps of Producing 3D Figures

Step1. To find silhouette lines of the surface.
Step2. To find the intersections of silhouette lines and a projection curve.

Step3. To divide the curve by these intersects, and to decide whether each separation is hidden by the surface or not.

Steps of Producing 3D Figures

Step1. To find silhouette lines of the surface.
Step2. To find the intersections of silhouette lines and a projection curve.

Step3. To divide the curve by these intersects, and to decide whether each separation is hidden by the surface or not.

$\|\forall\|$	\triangleleft	\triangleleft	\triangleright	$\triangleright 1$	$\triangleright \\|$

Steps of Producing 3D Figures

Step1. To find silhouette lines of the surface.
Step2. To find the intersections of silhouette lines and a projection curve.

Step3. To divide the curve by these intersects, and to decide whether each separation is hidden by the surface or not.

$\|1\|$	\triangleleft	\triangleleft	\triangleright	$\Delta 1$	$\triangleright \\|$

Steps of Producing 3D Figures

- Of these steps, step 2 represents a difficult task in the case of contacting curves because curves are numerically polygonal lines.

Refinement of Step 2

- We have adopted an interpolatory scheme using Bézier curves near the contact point.
- Then we use a formula developed by Oshima to decide the control points.

Drawing Curves, Mathematical Progress in Expressive
Image Synthesis III, edited by Y. Dobashi and H. Ochiai,
Mathematics for Industry, 24 (2016), 95-106, Springer,
ISBN : 9789811010750

Refinement of Step 2

- We have adopted an interpolatory scheme using Bézier curves near the contact point.
- Then we use a formula developed by Oshima to decide the control points.

Drawing Curves, Mathematical Progress in Expressive Image Synthesis III, edited by Y. Dobashi and H. Ochiai, Mathematics for Industry, 24 (2016), 95-106, Springer, ISBN : 9789811010750

$\|1\|$	\square	\triangleleft	\triangleright	$\triangleright 1$	$\Delta \\|$

Refinement of Step 2

- In many cases, Oshima spline gives better interpolation than Catmull-Rom spline.

Refinement of Step 2

- The intersect is represented by a cluster of points near each others.
- One of them is ($-1.65827,1.20578$)
- $\mathrm{K}_{\mathrm{E}} \mathrm{Cindy}$ can also call Maxima from Cinderella and return a result back to Cinderella.
- The result is ($-1.65670129924,1.21075577903$)

$\|l\|$	\triangleleft	\triangleleft	\triangleright	$\Delta \mid$	$\triangleright \\|$	$1 / 4$

Refinement of Step 2

- The intersect is represented by a cluster of points near each others.
- One of them is $(-1.65827,1.20578)$
- K K_{E} Cindy can also call Maxima from Cinderella and return a result back to Cinderella.
- The result is ($-1.65670129924,1.21075577903$)

Refinement of Step 2

- The intersect is represented by a cluster of points near each others.
- One of them is $(-1.65827,1.20578)$
- $\mathbf{K}_{\mathbf{E}}$ TCindy can also call Maxima from Cinderella and return a result back to Cinderella.
- The result is ($-1.65670129924,1.21075577903$)

$\mid 1 \neg$	\triangleleft	\triangleleft	\triangleright	$\Delta 1$	$\triangleright \\|$

Refinement of Step 2

- The intersect is represented by a cluster of points near each others.
- One of them is $(-1.65827,1.20578)$
- KETCindy can also call Maxima from Cinderella and return a result back to Cinderella.
- The result is $(-1.65670129924,1.21075577903)$

Calling C from $\mathrm{K}_{\mathbf{E}} \mathbf{T C i n d y}$

- $\mathrm{K}_{\mathbf{E}}$ TCindy can call C to speed up the calculation of 3D drawing.
- We will demonstrate that it is very effective to call C with an example.

Conclusions

- The combined use of $\mathrm{K}_{\mathrm{ET}} \mathrm{Cindy}$, Cinderella, Maxima, C is an effective tool to develop programs for surface drawing.
- It is often necessary to write a program for producing desirable materials.
- These programming becomes easier through the help of visualisation on the screen.

