Discovering properties of bar linkage mechanisms based on partial Latin squares by means of DGSs

Raúl Falcón

School of Architecture / School of Building Engineering. Department of Applied Mathematics I.

University of Seville.

ACA 2018 (Santiago de Compostela. June 20, 2018).

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

CONTENTS

© Linkages derived from PLS

© Analysis by DGS

I. Linkages derived from PLS

Mechanisms.

- Mechanism: Set of rigid bodies connected by joints and transmitting force and motion.

- Link: Rigid body having two joints.
- Bar linkage mechanism: Rigid bodies = Bars. At least one link.
- Coupler curve: Trace curve generated by a joint.

Synthesis and analysis of mechanisms by using DGSs.

出 4

Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp

Yinan Hu, ${ }^{1}$ Nathan Nelson-Maney, ${ }^{2}$ and Philip S. L. Anderson ${ }^{3,4}$
2017

Comparison of Geometry Software for the Analysis in Mechanism Theory
S. Kurtenbach, I. Prause, C. Weigel and B. Corves 2014

Teaching Mechanism and Machine Theory with GeoGebra

[^0]
Kinematics

- Kinematics: Description of the motion of a mechanism without considering neither its cause nor the mass of its components.
For each point: Position, velocity and acceleration.

1876:
Kinematic chain: Mechanism.
Kinematic pair: Joint.
Every constraint on a kinematic chain can be described as a system of constraints on its kinematic pairs.

Franz Reuleaux.
(Germany, 1829-1905).
Classification parameters of mechanisms:

- Degree-of-freedom: Minimum number of parameters defining its configuration (coordinates and motion).
- Number of links.
- Number of joints.
- Types of joints: screw, wheel, cam, crank, belt and ratchet.

Linkage graphs

- Kinematic diagram: Graphical representation of a mechanism, which illustrates the connectivity of links and joints.
- Linkage graph: Graph $G=(V, E)$ such that:
- $V \equiv$ Joints.
- $E \equiv$ Links.

Graphical enumeration technique

THE SYNTHESIS OF MECHANISM SYSTEMS USING A MECHANISM CONCEPT LIBRARY
Feng-Ming Ou^{1}, Hong-Sen Yan^{2}, Ming-Feng Tang ${ }^{3}$

Partial Latin squares (PLS(n)).

- Partial Latin square: $n \times n$ array whose cells are empty or contains an element of $[n]:=\{0, \ldots, n-1\}$, without repetitions per row or column.

$L=\left(l_{i j}\right) \equiv$| | 1 | 3 | | 4 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | | 2 | |
| 2 | | 1 | 3 | |
| 4 | 2 | 0 | | 1 |
| | 3 | 2 | | |

n	\# PLS(n)	\# LS (n)
1	2	1
2	35	2
3	11776	12
4	127545137	576
5	64170718937006	161280
6	2027032853070203981647	812851200
7	5175166233060627523665748739420	61479419904000
8	$*$	4
9	$*$	9982437658213039871725064756920320000
10	$* 776966836171770144107444346734230682311065600000$	

Partial Latin squares: Isomorphisms

- $L=\left(l_{i j}\right)$ and $L^{\prime}=\left(l_{i j}^{\prime}\right)$ in $\operatorname{PLS}(n)$ are isomorphic if $\exists \pi \in S_{n}$ such that

$$
\pi\left(l_{i j}\right)=I_{\pi(i) \pi(j)}^{\prime}, \forall i, j \in[n] \text { such that } l_{i j} \in[n] .
$$

0	1	
1	0	2
	2	0

0	1	2
1	0	
2		0

n	\# Isomorphism classes $\operatorname{PLS}(n)$
1	2
2	20
3	2029
4	5319934
5	534759300183
6	2815323435872410905

[F13, F15, FS18]

A subset of partial Latin squares $\left(\mathcal{M}_{n}\right)$.

\mathcal{M}_{n}

- Reduced: $l_{0 i}, l_{i 0} \in\{\emptyset, i\}$, for all $i \in[n]$.
- Zero-diagonal: $l_{i i}=0$, for all $i \in[n]$
- Symmetric: $l_{i j}=l_{j i}$, for all $i, j \in[n]$.
- There exists at least one non-zero symbol per row and per column.
- Each non-zero symbol of [n] appears at least twice.
- $I_{i j} \in[n] \backslash\{0\} \Rightarrow \exists k \in[n]$ such that $\left\{I_{k j}, l_{i k}\right\} \cap([n] \backslash\{0\}) \neq \emptyset$.
- If every non-zero symbol appears exactly twice, not all of them are in the same row or column.

$$
L=\left(l_{i j}\right) \equiv \begin{array}{|c|c|c|c|c|}
\hline 0 & 1 & 2 & & 4 \\
\hline 1 & 0 & & 2 & \\
\hline 2 & & 0 & 3 & \\
\hline & 2 & 3 & 0 & \\
\hline 4 & & & & 0 \\
\hline
\end{array}
$$

Designing bar linkages derived from a PLS

$\mathbf{M}(\mathbf{L})$: Set of bar linkage mechanisms derived from $L=\left(l_{i j}\right) \in \mathcal{M}_{n}$ as follows:

- There exists a bar $B_{i j}$ if $\Lambda_{i j} \in[n] \backslash\{0\}(i<j)$.
- $B_{i j}$ and $B_{i k}$ are connected by a joint J_{i}.
- $B_{i j}$ and $B_{k j}$ are connected by a joint J_{i}.
- If $l_{i j}=l_{i^{\prime} j^{\prime}}$, then $\left|B_{i j}\right|=\left|B_{i^{\prime} j^{\prime}}\right|$.

0	1	2		4
1	0		2	
2		0	3	
	2	3	0	
4				0

The distance matrix related to the joints is derived from L and $\left\{\left|B_{i j}\right|\right\}$.

0	$\left\|B_{12}\right\|$	$\left\|B_{13}\right\|$	0	$\left\|B_{15}\right\|$
$\left\|B_{12}\right\|$	0	0	$\left\|B_{13}\right\|$	0
$\left\|B_{13}\right\|$	0	0	$\left\|B_{15}\right\|$	0
0	$\left\|B_{13}\right\|$	$\left\|B_{15}\right\|$	0	0
$\left\|B_{15}\right\|$	0	0	0	0

II. Analysis by DGS

Representation in a DGS of bar linkages based on a PLS

$$
L=\left(l_{i j}\right) \in \mathcal{M}_{n} .
$$

- Each symbol $k \in[n] \backslash\{0\}$ is uniquely associated to a slider s_{k}.

0	1	2		4
1	0		2	
2		0	3	
	2	3	0	
4				0

$s_{3}=2.1$

Representation in a DGS of bar linkages based on a PLS

$$
\begin{aligned}
& \text { https: //www.geogebra.org/m/crvJ7CzX } \\
& \qquad\left|\mathcal{M}_{4}\right|=7 \quad\left|\mathcal{M}_{5}\right|=43
\end{aligned}
$$

\equiv GeeGebra

Bar linkage mechanisms based on partial $\mathrm{L}_{\mathbf{i}}$

Order 4
$M\left(L _(4,1)\right)$
$M\left(L _\{4,2]\right)$

M(L_(4.3])
$M\left(L _\{4,4\}\right)$
$M\left(L_{-}\{4,5]\right)$
$M\left(L_{-}(4,6\}\right)$
$M\left(L_{-}\{4,7]\right)$

Order 5

Bar linkage mechanisms based on partial Latin squares

Autor: Raúl Manuel Falcón Ganfornina

This GeoGebra Book contains different worksheets related to the study, analysis and characterization of bar linkage mechanisms associated to a given reduced, zero-diagonal and symmetric partial Latin square. The GeoGebra Book is distributed into chapters according to the order of the partial Latin square under consideration.

Reference:
R. M. Falcón. Discovering properties of bar linkage mechanisms based on partial Latin squares by means of Dynamic Geometry Systems. In: 24th Conference on Applications of Computer Algebra ACA 2018. (Santiago de Compostela, June 18-22, 2018).

Tabla de contenidos
Order 4
M(L \{4.1\})

Representation in a DGS of bar linkages based on a PLS

Representation in a DGS of bar linkages based on a PLS

M(L_(5,1)	M(L_[5,2$]$)	M(L_[5,3$\}$)	M(L_ $\{5,4\}$	M(L_-_5,5)	M(LL $(5,6])$	M(L 15.7)	M(LL $\{5,8\}$)
M(L_ 15,9$\}$)	M(L_(5,10$)$)	$M(\underline{L}$ (5,11$)$)	M(L_\{5,12\})	M(L_ $\mathbf{-}^{5}, 131$)	M(L[5, 14) $)$	M(L_(5,15) $)$	$M\left(L _\{5,16)\right)$
M(L_-\{5, 17])	M(L_(5,18$)$)	M(L_(5,19))	M(L- 55,20$\}$)	M(L_ $\{5,21\}$)	M(L_ 15,22$\}$)	M(L_(5,23)	M(L $(5,24)$)
M(L_ $(5,25)$)	M(L_ $[5,26\})$	M(L_\{ 5,27$\}$)	M(L_ $\{5,28\})$	M(L_ $(5,29\})$	$\mathrm{M}\left(\mathrm{L}_{-}(5,30)\right)$	$M\left(L_{-}[5,31\}\right)$	M(L_ 15,32$\}$)
M(L_ 55,33$\}$)	M(L_\{5,34])	M(L_ $\{5,35\})$	M(L_- 5,36$])$	M(L_(5,37))	M(L_\{4,38\})	M(L_ $\{5,39]$)	M(L_(5,40)
$M(L \sim\{5,41\})$	M(L_ $\{5,42\}$)	M(L $(5,43)$)					

Analysis of a bar linkage $\left(M_{5,1}\right)$.

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

$s_{1}=1.4$

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

Analysis of a bar linkage $\left(M_{5,10}\right)$.

0	1	2		4
1	0		2	
2		0	3	
	2	3	0	
4				0

0	1	2		4
1	0		2	
2		0	3	
	2	3	0	
4				0

$\mathrm{s}_{4}=2.3$
$\mathrm{s}_{3}=2.1 \quad-\quad-\quad s_{4}=2.3$

0	1	2		4
1	0		2	
2		0	3	
	2	3	0	
4				0

References

F13 R. M. Falcón, The set of autotopisms of partial Latin squares. Discrete Math. 313, 1150-1161 (2013).
F15 R. M. Falcón, Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method. European J. Combin. 48, 215-223 (2015).
F18 R. M. FALCón, Two-dimensional loci of points with a partial Latin square within their distance matrix. Submitted, 2018.
FS18 R. M. Falcón, R. J. Stones, Classifying partial Latin rectangles. Electron. Notes Discrete Math. 49, 765-771 (2015).
H17 Y. Hu, N. Nelson-Maney, P. S. L. Anderson, Common evolutionary trends underlie the four-bar linkage systems of sunfish and mantis shrimp. Evolution 71(5), 1397-1405 (2017).
I14 X. Iriarte, J. Aginaga, J. Ros, Teaching Mechanism and Machine Theory with GeoGebra. In New Trends in Educational Activity in the Field of Mechanism and Machine Theory, J. C. García-Prada, C. Castejón C. (eds.), 211-219, Springer International Publishing, Switzerland, 2014.

K14 S. Kurtenbach, I. Prause, C. Weigel, B. Corves, Comparison of Geometry Software for the Analysis in Mechanism Theory. In New Trends in Educational Activity in the Field of Mechanism and Machine Theory, J. C. García-Prada, C. Castejón (eds.), 193-201, Springer International Publishing, Switzerland, 2014.
P15 I. Prause, J. C. Fauroux, M. Hüsing, B. Corves, Using Geometry Sketchers and CAD Tools for Mechanism Synthesis. In Proceedings of IFToMM 2015, The 14th World Congress in Mechanism and Machine Science, paper OS3-032, 11 pp., International Federation for the Theory of Mechanisms and Machines, Taiwan, 2015.
R76 F. Reuleaux, Kinematics of machinery, outlines of a theory of machines, McMillan and Company, London, 1876.

Many thanks!

Discovering properties of bar linkage mechanisms based on partial Latin squares by means of DGSs

0	1			2
1	0		2	
		0	1	3
	2	1	0	
2		3		0

$\mathrm{s}_{1}=1.4$

[^0]: X. Iriarte, J. Aginaga and J. Ros2014

