

A new approach to automated study of isoptic curves

Thierry Dana-Picard and Zoltán Kovács

Special session on
Dynamic Geometry and Mathematics Education Santiago de Compostela

June 20 th, 2018

Definition

- Let C be a plane curve. For a given angle θ (with $0 \leq$ $\theta \leq 180^{\circ}$), a θ-isoptic of C is the geometric locus of points in the plane through which pass a pair of tangents with an angle of θ between them.
- The special case for which $\theta=90^{\circ}$ is called an orthoptic curve.

Orthoptics of conics

- The directrix of a parabola (always exists).
- The director circle of an ellipse (always exists).
- The director circle of a hyperbola (exists under a condition on the angle between the asymptotes).

Bisoptics of ellipses

$$
E: x^{2}+4 y^{2}=1
$$

$$
\operatorname{Opt}(E, 45-135):\left(x^{2}+y^{2}\right)^{2}-\frac{7}{2} x^{2}-\frac{13}{2} y^{2}+\frac{41}{16}=0
$$

Jordan curves

- A plane curve C which is smooth, strictly convex and closed is called a Jordan curve.
- Theorem: A Jordan curve divides the plane into three regions, namely the interior, the curve itself and the exterior.
- If the Jordan curve C is strictly convex, then through an interior point, no tangent to C passes, and through an exterior point passes one pair of tangents.

Jordan curves

- A plane curve C which is smooth, strictly convex and closeqjiflat hadopeersefor:
- Theorem: A Jordancurve divides the plane into three regiblohaladospancudryeeturve itself and the exterior.
- If the Jordan curve C is strictly convex, then through an interior point, no tangent to C passes, and through an exterior point passes one pair of tangents.

Example 1: Isoptics of an astroid parametric presentations

Example 2 105°-isoptic of a parabola

alpha $=75$

$$
y=x^{4}-x
$$

Two approaches

- Parametric method
- Define the input curve with a parametric presentation
- Find a presentation for tangents vectors/lines
- Find an expression for orthogonality of two tangents
- Compute a parametric presentation of the isoptic
- Compute an implicit equation by elimination
- Implicit method
- Define the input curve as an algebraic equation
- Compute partial derivatives at two hypothetical tangent points
- Assume that the angle between the tangents is as required
- Compute an implicit equation by elimination

Two approaches (comparison)

- Parametric method
- Exact
- Fast
- Works only in some special cases
- Implicit method
- Works in all cases when the degree is low
- Computationally heavy from quartic cases (Gröbner bases)
- Example: orthoptic of a closed Fermat curve

With Mathematica.
Credit: Witold Mozgawa, Lublin

Floor, entrance to an old synagogue, Budapest

Orthoptic of a quartic using LocusEquation

- Please see https://www.geogebra.org/m/J7tNfrMX

```
\equiv Ge&Gebra
```


References

- W. Cieslak, A. Miernowski and W. Mozgawa, Isoptics of a closed strictly convex curve, in D. Ferus, U. Pinkall, U. Simon and B. Wegner (edts) Global Differential Geometry and Global Analysis LNM 1481, Springer, pp. 28-35 (1990).
- A. Miernowski and W. Mozgawa, On some geometric condition for convexity of isoptics, Rendinconti Sem. Mat. Universita di Poi. Torino 55 (2), pp. 93-98 (1997).
- Th. Dana-Picard, An automated study of isoptic curves of an astroid, submitted preprint,(2018).
- Th. Dana-Picard and A. Naiman, Isoptics of Fermat Curves, Preprint, (2018).
- Z. Kovacs and Th. Dana-Picard, Isoptic curves of a parabola, available: https://www.geogebra.org/m/K5Fyb2dP, (2018).
- Z. Kovacs and Th. Dana-Picard, Computing the orthoptic of a convex quartic, available: https://www.geogebra.org/m/mfrwfGNc,(2018).
- Th. Dana-Picard and Z. Kovacs (2018?) Automatic determination of isoptics using Dynamic Geometry, to appear in Lect. Notes in Artificial Intelligence, Springer.

A new approach to isoptics - ACA 2018

A new approach to isoptics - ACA 2018

