

A new approach to automated study of isoptic curves

Thierry Dana-Picard and Zoltán Kovács

-3

Special session on Dynamic Geometry and Mathematics Education Santiago de Compostela June 20th, 2018

Definition

- Let *C* be a plane curve. For a given angle θ (with $0 \le \theta \le 180^{\circ}$), a θ -isoptic of *C* is the geometric locus of points in the plane through which pass a pair of tangents with an angle of θ between them.
- The special case for which $\theta = 90^{\circ}$ is called an orthoptic curve.

Orthoptics of conics

- The directrix of a parabola (always exists).
- The director circle of an ellipse (always exists).
- The director circle of a hyperbola (exists under a condition on the angle between the asymptotes)

the asymptotes).

Bisoptics of ellipses

$$E: x^{2} + 4y^{2} = 1$$

$$Opt(E, 45 - 135): (x^{2} + y^{2})^{2} - \frac{7}{2}x^{2} - \frac{13}{2}y^{2} + \frac{41}{16} = 0$$

Jordan curves

- A plane curve C which is smooth, strictly convex and closed is called a Jordan curve.
- **Theorem:** A Jordan curve divides the plane into three regions, namely the interior, the curve itself and the exterior.
- If the Jordan curve C is strictly convex, then through an interior point, no tangent to C passes, and through an exterior point passes one pair of tangents.

Jordan curves

- A plane curve C which is smooth, strictly convex and closed is called hardan curve for:
- Theorem: A Jordan curve divides the plane into three region O hald to Sie Chieddry te Scurve itself and the exterior.
- and the exterior.
 If the Jordan curve C is strictly convex, then through an interior point, no tangent to C passes, and through an exterior point passes one pair of tangents.

Example 1: Isoptics of an astroid parametric presentations

Example 2 105°-isoptic of a parabola

Orthoptic of an open quartic

Two approaches

- Parametric method
 - Define the input curve with a parametric presentation
 - Find a presentation for tangents vectors/lines
 - Find an expression for orthogonality of two tangents
 - Compute a parametric presentation of the isoptic
 - Compute an implicit equation by elimination

- Implicit method
 - Define the input curve as an algebraic equation
 - Compute partial derivatives at two hypothetical tangent points
 - Assume that the angle between the tangents is as required
 - Compute an implicit equation by elimination

Two approaches (comparison)

- Parametric method
 - Exact
 - Fast
 - Works only in some special cases

- Implicit method
 - Works in all cases when the degree is low
 - Computationally heavy from quartic cases (Gröbner bases)

Using Locus and LocusEquation commands

• Example: orthoptic of a closed Fermat curve $x^{4}+y^{4}=1$

$$x^{40} + y^{40} = 1$$

With Mathematica. Credit: Witold Mozgawa, Lublin

Floor, entrance to an old synagogue, Budapest

A new approach to isoptics - ACA 2018

Orthoptic of a quartic using LocusEquation

 \equiv

Please see <u>https://www.geogebra.org/m/J7tNfrMX</u>

Joint work with Zoltan Kovacs

References

- W. Cieslak, A. Miernowski and W. Mozgawa, *Isoptics of a closed strictly convex curve*, in D. Ferus, U. Pinkall, U. Simon and B. Wegner (edts) Global Differential Geometry and Global Analysis LNM 1481, Springer, pp. 28–35 (1990).
- A. Miernowski and W. Mozgawa, *On some geometric condition for convexity of isoptics*, Rendinconti Sem. Mat. Universita di Poi. Torino 55 (2), pp. 93-98 (1997).
- Th. Dana-Picard, *An automated study of isoptic curves of an astroid*, submitted preprint, (2018).
- Th. Dana-Picard and A. Naiman, *Isoptics of Fermat Curves*, Preprint, (2018).
- Z. Kovacs and Th. Dana-Picard, *Isoptic curves of a parabola*, available: <u>https://www.geogebra.org/m/K5Fyb2dP</u>, (2018).
- Z. Kovacs and Th. Dana-Picard, *Computing the orthoptic of a convex quartic,* available: <u>https://www.geogebra.org/m/mfrwfGNc,(2018)</u>.
- Th. Dana-Picard and Z. Kovacs (2018?) *Automatic determination of isoptics using Dynamic Geometry*, to appear in Lect. Notes in Artificial Intelligence, Springer.

Thank you fo

A new approach to isoptics - ACA 2018

Thank you for our of a data of a dat

