TRANSFORMADAS DE LAPLACE

$$
L(f)(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

TABLA RESUMIDA DE TRANSFORMADAS DE LAPLACE

$f(t)$	$L(f)(s)$	Dominio
K	$\frac{K}{s}$	$s>0$
$t^{n}, n \in N$	$\frac{n!}{s^{n+1}}$	$s>0$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$	$s>0$
$\operatorname{sen}(a t)$	$\frac{a}{s^{2}+a^{2}}$	$s>0$
$e^{a t}$	$\frac{1}{s-a}$	$s>a$
$t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$	$s>a$
$t^{2} \cos (a t)$	$\frac{2 s\left(s^{2}-3 a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}$	R
$t^{2} \cos (a t)$	$\frac{6\left(s^{4}-6 a^{2} s^{2}+a^{4}\right)}{\left(s^{2}+a^{2}\right)^{4}}$	R
$t s e n(a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	R
$t^{2} \operatorname{sen}(a t)$	$\frac{2 a\left(3 s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}$	R
$t^{3} \operatorname{sen}(a t)$	$\frac{24 a s\left(s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{4}}$	R
$t^{n} e^{a t}, n \in N$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	R
$e^{a t} \operatorname{sen}(b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	R
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$	$s>\|a\|$
$\operatorname{senh}(a t)$	$\frac{a}{s^{2}-a^{2}}$	$s>\|a\|$

COMPORTAMIENTO ANTE EL OPERADOR DERIVADA

$$
\begin{aligned}
& L\left(f^{\prime}\right)(s)=s L(f)(s)-f(0) \\
& \begin{aligned}
L\left(f^{\prime \prime}\right)(s) & =s^{2} L(f)(s)-f^{\prime}(0)-s f(0) \\
L\left(f^{(3)}\right)(s) & =s^{3} L(f)(s)-f^{\prime \prime}(0)-s f^{\prime}(0)-s^{2} f(0) \\
& \vdots \\
L\left(f^{(n)}\right)(s) & =s^{n} L(f)(s)-f^{(n-1)}(0)-s f^{(n-2)}(0)-\cdots-s^{n-1} f^{\prime}(0)-s^{n} f(0)
\end{aligned}
\end{aligned}
$$

