TRANSFORMADAS DE LAPLACE

$$L(f)(s) = \int_0^\infty e^{-st} f(t) dt$$

f(t)	L(f)(s)	Dominio
K	$\frac{K}{s}$	0 < z
$t^n, n \in N$	$\frac{n!}{s^{n+1}}$	0 < z
$\cos(at)$	$\frac{s}{s^2 + a^2}$	<i>s</i> > 0
sen(at)	$\frac{a}{s^2 + a^2}$	<i>s</i> > 0
e^{at}	$\frac{1}{s-a}$	s > a
$t\cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$	s > a
$t^2 \cos(at)$	$\frac{2s(s^2 - 3a^2)}{(s^2 + a^2)^3}$	R
$t^2 \cos(at)$	$\frac{6(s^4 - 6a^2s^2 + a^4)}{(s^2 + a^2)^4}$	R
tsen(at)	$\frac{2as}{\left(s^2+a^2\right)^2}$	R
$t^2 sen(at)$	$\frac{2a(3s^2 - a^2)}{(s^2 + a^2)^3}$	R
$t^3 sen(at)$	$\frac{24as(s^2 - a^2)}{(s^2 + a^2)^4}$	R
$t^n e^{at}, n \in N$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	R
$e^{at}sen(bt)$	$\frac{b}{(s-a)^2+b^2}$	R
$\cosh(at)$	$\frac{s}{s^2 - a^2}$	s > a
senh(at)	$\frac{a}{s^2 - a^2}$	s > a

TABLA RESUMIDA DE TRANSFORMADAS DE LAPLACE

COMPORTAMIENTO ANTE EL OPERADOR DERIVADA

$$L(f')(s) = sL(f)(s) - f(0)$$

$$L(f'')(s) = s^{2}L(f)(s) - f'(0) - sf(0)$$

$$L(f^{(3)})(s) = s^{3}L(f)(s) - f''(0) - sf'(0) - s^{2}f(0)$$

$$\vdots$$

$$L(f^{(n)})(s) = nL(f)(s) - f^{(n-1)}(0) - f^{(n-2)}(0) - nL(f)(0) - nL(f)(0)$$

$$L(f^{(n)})(s) = s^{n}L(f)(s) - f^{(n-1)}(0) - sf^{(n-2)}(0) - \dots - s^{n-1}f'(0) - s^{n}f(0)$$