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Reliability Analysis of Memories
Suffering Multiple Bit Upsets
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Abstract—The reliability of memory systems that are exposed
to soft errors has been studied in the past with the aim of deriving
the Mean Time to Failure (MTTF) and the probability of failing
in a given time interval. On those studies, the soft errors were
considered to arrive following a Poissonian basis and they were
assumed to be single uncorrelated events (each event causes only
one soft error). Recent studies suggest that Multiple Bit Upsets
(MBUs) are a significant part of the error events in advanced
memory technologies and that they will continue to grow in the
next technology nodes. The errors in an MBU are normally caused
by the same physical event and therefore affect memory cells that
are close together. This poses a major problem to memories that
are protected with per-word Single Error Correction codes, as an
MBU is likely to affect two or more bits in the same word, causing
an uncorrectable error. To avoid that problem, interleaving is used
to ensure that cells that are physically close together belong to dif-
ferent logical words, so that the errors in an MBU are distributed
over a number of words each suffering only one error. Although
some works have been done that characterize memories under
radiation tests, no mathematical model of the effect of MBUs on
the reliability of a memory has been proposed in the literature,
to the best of the authors’ knowledge. Therefore, in this paper,
the reliability of memories suffering MBUs is analyzed in detail.
The fundamental result from that analysis is that the MTTF of a
memory exposed to MBUs can be approximated using the existing
results for single event upsets by adjusting the error arrival rate.

Index Terms—Memory, multiple bit upsets (MBUs), reliability.

I. INTRODUCTION

M EMORIES are present in most digital systems. From
generic computers to specific embedded applications

and field-programmable gate arrays, all need storage devices
with an increasing capacity. Therefore, from a practical point of
view, the reliability of memories is important to guarantee the
correct operation of the system [1]–[3]. This has led to several
studies [4]–[7] that discuss various reliability models.

Although reliability has been studied from long ago
[8], [9], new sources of errors are arising, apart from the
traditional ones, which makes the probability of failure increas-
ingly higher. This is particularly visible in hostile environments
where there are physical phenomena that affect semiconductors
in a negative way. Radiation [10]–[12] is one of these factors
and its influence in errors has been reported many times [13],
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[14]. It is associated to many fields, like the medical and
military industries, but space is one of the areas where more re-
search is being devoted to this problem [15]. Space applications
are especially critical, since systems are not easily accessible,
and therefore, errors may produce the complete failure of a
mission [16]–[18].

Because of all these problems, memories are usually pro-
tected to make them as much fault-tolerant as possible. One
of the most used mechanisms is single error correction (SEC)
and double error detection codes that can be implemented using
Hamming codes [19]. These codes add a level of redundancy
at the expense of using some of the memory capacity to store
the extra information needed for error detection and correction.
In this way, isolated Single Event Upsets (SEUs) [20]–[23],
which produce a single error in a given memory word, can be
automatically corrected, as long as no more than one affects
the same memory word at the same time. The correction is
achieved with the so-called scrubbing mechanism. Through
this, a scrubbing period is defined, ts, which triggers a rewrite
process in the memory, updating the wrong words with their
right values (using the SEC codes).

However, it is possible that two (or more) independent SEUs
can strike on the same word within the same scrubbing period.
If this happens, the errors would be uncorrectable, leading to
a failure of the system. Many models are described in the
literature that address this scenario and calculate the Mean Time
to Failure (MTTF) and reliability of the system [24].

However, there are other phenomena that do not induce an
SEU in the system, but multiple simultaneous errors, which is
known as Multiple Bit Upsets (MBUs) [25]. This may happen,
for example, when a highly charged particle strikes on the
device, and due to its energy or incidence angle, it affects not
only an isolated transistor but a larger area, disturbing several
memory cells. As the integration level grows, these memory
cells become smaller, and the probability of MBUs increases.
The importance of MBUs has been recently addressed in sev-
eral papers [25]–[28], concluding that a growing number of
errors are due to this fact.

One of the most direct mechanisms to mitigate the effect of
MBUs is the use of an interleaving scheme. This mechanism
spreads the bits in a logical word into different physical words,
following a constant pattern (i.e., all the bits in the logical
word are separated by the same distance). Therefore, the bits
physically close belong to different logical words, and since
MBUs affect a reduced area in the memory, the induced errors
will be correctable by the SEC codes.

However, MBUs can produce failures, and therefore have an
effect on the reliability of the system, which has been proved
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by recent studies. An SEU followed by an MBU (or vice versa)
or a combination of MBUs, may produce double errors in the
same logical word, leading to the failure of the system [25].

Although some works have been done to characterize the
effects of MBUs in memories from a physical point of view
(see [29]–[31] for an analysis of error patterns and effects),
no mathematical model for reliability has been considered, in
part due to the complexity of the formulation and to a nearly
exclusive focus on SEUs. In this paper, a detailed analysis of
how MBUs affect the system is presented. Several effects will
be considered, such as the use of scrubbing and the spatial
correlation of the MBUs. Finally, several results through simu-
lation will be offered, which prove the conclusions presented in
this paper.

II. MODELING THE EFFECTS OF MBUS

To model the effects of MBUs, a first step would be to specify
the problem assumptions, which are similar to other models in
the literature.

The first assumption is that the memory is protected using
SEC codes. This means that there is extra hardware in the
memory so that single errors in a given word can be detected
and corrected. This is an initial protection level that forces the
occurrence of two or more errors in the same word to produce
a failure.

The second assumption is that the memory is implemented
using a physical interleaving organization. With this, the differ-
ent bits that form a logical word are physically distributed in
the memory after a certain pattern. Or in other words, the bits
that are physically close in memory belong to different logical
words. This gives a second protection level, since physically-
located errors induced by an event will likely not affect the same
logical word, and therefore will be managed by the SEC codes.
More precisely, this assumption implies that the interleaving is
such that the physical distance between the bits of a logical
word is always larger than the maximum physical distance of
two bits in any of the possible MBU patterns.

The next assumption is that the event arrival rate for the
entire memory is λ.1 In this case, conversely to what happens
in the SEU study, the difference between number of events (g)
and number of errors (m) has to be taken into account. It is
clear that for SEUs, g = m, since there is a univocal relation
between both. However, when MBUs are considered, g < m.
Let us define the errors-per-event set, Q, as

Q = {qi|i ≤ g, qi ≥ 1}

where qi is the number of errors produced by event i. All
the elements in Q are independent and identically distributed
random variables.

This leads to the final assumption, which considers that the
mentioned events follow a Poissonian distribution. This implies
how events occur in the system, but this is not of much help in
this case, since failures are caused by errors, not by events. To

1In this paper, a constant λ is assumed. If due to the environmental condi-
tions, λ is variable, a worst case analysis could be done, choosing an upper
bound of this parameter.

consider this, and since an event can produce several errors, a
probability distribution function of errors-per-event (that is the
distribution for each qi) has to be defined, P , as

P =

{
p(n)|n ∈ N,

∞∑
n=1

p(n) = 1

}

where p(n) indicates the probability that a certain event pro-
duces n errors.

With this distribution function, it can be proven that the num-
ber of errors, m, in a given time interval, t, follows a Compound
Poisson process [32], where p(n) is the compounding function.
The probability of m errors in time t is given by

P (m, t) =
∞∑

i=0

(
(λ · t)i

i!
· e−λ·t · pi∗(m)

)
(1)

where pi∗(m) is the i-fold convolution of p(n).
For example, in [27], it is proposed that the number of errors

in an MBU can be modeled as a geometric distribution such that
p(n) takes the form

p(n) = rn−1 · (1 − r), n ≥ 1 (2)

and (1) can be computed in this particular case as

P (m, t)=
m∑

i=1

(
(λ·t)i

i!
· e−λ·t ·

(
m − 1
i − 1

)
· rm−i · (1 − r)i

)
.

(3)

A. Nonscrubbing

Let us consider first the case in which scrubbing is not used
so that errors accumulate in the memory over time. Using
P (m, t) we can derive the reliability function R(t) as follows:

R(t) = 1 −
∞∑

m=1

(P (m, t) · Pf(m)) (4)

where Pf(m) is the probability of failing given m errors, and
therefore, the term in the summation is the probability that m
errors happen in t, and that a failure is produced by those m
errors.

Let us explore how Pf should be defined in the current
problem. For the sake of simplicity, the case of single error
events will be initially considered. Assuming a memory with M
words, each of them protected with SEC codes (what implies
that single errors on a memory position do not produce a
failure), then for single error events Pf(m) takes the form

Pf(m) =
m∑

j=1

(
j − 1
M

·
j−1∏
i=1

(1 − Pf(i))

)

Pf(1) = 0. (5)

The second equation is due to the SEC codes, which make
the probability of failure with an isolated error null.
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The product term implies the probability that j − 1 errors
have not produced a failure (since they have affected different
memory positions, and therefore they can be corrected by the
SEC logic). In the same way, (j − 1/M) denotes the proba-
bility that the jth error strikes on one of the j − 1(out of M )
previously affected memory positions, therefore producing a
failure.

Unfortunately, in the case of MBUs, following a per-event
distribution p(n) makes the derivation of Pf(m) complex, as
the errors within each event are assumed (by using interleaving)
to fall on different words.

To see this complexity, let us examine an example where
p(n) = 1 for n = 2, and 0 elsewhere (each event produces two
errors always)

Pf(m) =
m∑

j=1

(
j′ − 1

M
·

j−1∏
i=1

(1 − Pf(i))

)
(6)

where j′ equals j for j odd and j − 1 for j even.
In this case, what distorts the results of expression (5) is

that the first two errors (produced both by the first event) can
never produce a failure, because according to the assumptions,
they will be physically close but logically distant. Therefore, no
failure may happen until the third error arrives (which is the first
of the second event) and eventually strikes on the same word
that the first or second error did. A similar situation happens
with the fourth error, where a failure can occur together with the
first or second error, but never with the third one (both produced
by the second event).

Through this example, it can be seen that the probabilities of
failure are affected by how errors are distributed within MBUs,
or in other words, by p(n).

For an arbitrary distribution p(n), the computation of Pf(m)
becomes even more complex. However, from the example
above it can be seen that, given a certain number of errors m,
the probability of failure Pf(m) in the case wherein these errors
come grouped in MBUs is always lower than if they come
distributed as individual SEUs. This is due to the constraint
explained before by which all the errors forming the same
MBU cannot produce a failure by themselves, and therefore
the combinations that lead to a failure are lower. With this
consideration, the single error event case is an upper bound for
the more general MBU case

Pf(m) |MBU ≤ Pf(m)|SEU

=
m∑

j=1


j − 1

M
·

j−1∏
i=1

(1 − Pf(i))


 . (7)

This conclusion is not intuitive, since it may seem strange
that the probability of failure for MBUs is lower than for SEUs.
To avoid misleading interpretations, it has to be noticed that
this result only states that the probability of failing, given m
errors, is equal or lower if the errors occur grouped in MBUs
rather than in isolated SEUs. This is a direct consequence of the
assumption that errors within an MBU cannot occur in the same

logical memory word, and therefore cannot produce a double
(uncorrectable) error.

Likewise, the reliability function can be lower bounded as

R(t)|MBU

≥ 1 −
∞∑

m=1


P (m, t) ·

m∑
j=1

(
j − 1
M

·
j−1∏
i=1

(1 − Pf(i))

) (8)

where the Pf(m) associated to the single error event case is
used in the right term. The MTTF can also be lower bounded as

MTTF|MBU =

∞∫
0

R(t) · dt

≥
∞∫

0

{
1 −

∞∑
m=1

(
P (m, t)

·
m∑

j=1

(
j − 1
M

·
j−1∏
i=1

(1 − Pf(i))

))}
· dt.

(9)

Since the previous expressions can become quite complex,
another upper bound approximation will be presented next to
simplify calculations.

Let us define m as the random variable that denotes the
number of errors producing a memory failure. Let us also define
the random variable mac as the number of errors present in the
system when a failure happens. For the case of SEUs only, mac

and m are obviously the same variable. In the case of MBUs,
the following relationship between them holds:

m ≤ mac. (10)

This is due to the fact that errors come grouped into MBUs,
e.g., if three errors are to produce a failure and the first MBUs
to arrive happen to induce two errors each, then two MBUs will
be needed to reach the three overall errors (m = 3), but in fact
four errors (mac = 4) will have occurred in the system (two
errors after the first MBU and four after the second one; the
value of three cannot be directly reached).

Let us define the random variable g as the number of events
to failure. Since these g events have produced all the errors in
the system until it fails, then mac can be written as

mac =
g∑

i=1

qi (11)

where qi are the independent random variables defined before.
Taking the mathematical expectation on (11), the following is
obtained:

E[mac] = E

[
g∑

i=1

qi

]
. (12)

Applying Wald’s identity (since qi are independent and
identically distributed) to the rightmost member of (12), the
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following expression is obtained:

E

[
g∑

i=1

qi

]
= E[g] · E[qi]. (13)

Let us define Q per
event

as the expected value of distribution qi,
which is determined by p(n) in the following way:

Q per
event

= E[qi] =
∞∑

j=1

j · p(j) = 1+
∞∑

j=2

(j − 1) · p(j). (14)

Then, combining (12) and (13)

E[mac] = E

[
g∑

i=1

qi

]
= Q per

event
· E[g]. (15)

Now, considering the inequality (10) and (15)

E[m] ≤ Q per
event

· E[g]. (16)

Or, in other words

E[g] ≥ E[m]
Q per

event

. (17)

Let us consider now the well-known relationship of the MTTF
and Mean Events To Failure (METF) for Poisson distributions
[4] (see the Appendix for a demonstration that it also applies
for the current case of Compound Poisson)

MTTF =
METF

λ
. (18)

As seen in expression (17), for the MBU case, the expected
value of the number of events to failure, E[g] is always higher
or equal to E[m]/Q per

event
. However, E[g] is, by definition, the

METF. Therefore, combining (17) and (18)

MTTF|λMBU ≥ E[m]|MBU

λ · Q per
event

≥ E[m]|SEU

λ · Q per
event

(19)

where the rightmost inequality in (19) stems from Pf(m) being
lower in the MBU case as discussed before.

But for single error events, the number of events is identical
to the number of errors (one error per event), and therefore,
E[m] is the definition of METF for the SEU case. In this way

E[m]|SEU

λ · Q per
event

=
METF|SEU

λ′ = MTTF|λ′

SEU (20)

where λ′ is defined as

λ′ = λ · Q per
event

= λ ·


1 +

∞∑
j=2

(j − 1) · p(j)


 . (21)

Expression (20) represents the MTTF for single error events,
with a modified event arrival rate, λ′.

Therefore, through (19) and (21), the following inequality is
obtained:

MTTF|λMBU ≥ MTTF|λ′

SEU. (22)

What this expression means is that, in order to study the
reliability of a memory affected by MBUs, the simpler case
of single error events can be studied instead, with λ increased
in the factor mentioned in (21). The results obtained can be
extrapolated to the MBU case as a lower bound of the MTTF,
which simplifies the process compared to the calculation given
by (9).

This is an important result, since this lower bound (the MTTF
for the SEU case) can be easily calculated, and therefore the
application of (22) is straightforward. For example, for large
values of M , the approximation (23) presented in [33] could be
used to quickly evaluate the lower bound

MTTF|λ′

SEU
∼= 1

λ′ ·
√

π

2
· M. (23)

It is also important to note that the derivation of this bound
does not rely on the fact that Pf(m) is lower in the MBU case:
even if E[m] were the same for SEUs and MBUs, expression
(22) would still be valid.

As a summary of the present section, it has been shown that
the MTTF in the case of MBUs can be lower bounded with the
SEUs only case based on two observations: 1) The errors within
an MBU cannot occur on the same word and 2) The number of
errors present in the system (mac) when a failure happens on
error m is larger in the MBU case, as the errors arrive in groups.

Another important point is that as M grows (size memory),
the approximation in (22) gets better. This is because in this
case, since the probability of failure decreases, most of the
failures will occur for large values of m such that m/mac is
close to 1 (and therefore expressions (10), (17), and (22) tend
to become identities). As an example, if p(n) is 0 for n > j
then the worst case for mac would be (m + j − 1), and as m
grows, the expression m/mac = m/(m + j − 1) gets closer
to 1. A similar reasoning applies to (7) where if the value of
m that causes failure grows, the impact of errors in an MBU
falling on different words becomes smaller.

B. Scrubbing

Another technique that is normally used in conjunction with
SEC is scrubbing, where the memory positions are read and
rewritten periodically such that single errors are removed. In
that case, the derivations are based on calculating the prob-
ability of failure Pf

2 in a given scrubbing interval ts. If this
scrubbing interval is short enough compared with the event
arrival rate, λ∗ts 
 1, as is normally the case, then most of the
errors will be caused by just two events, so that Pf can be easily

2The Pf used in this section corresponds to the probability of failure in a
fixed scrubbing interval, ts. Compare with Pf(m) used in the previous section,
which also indicated the probability of failure, but in that case associated to the
appearance of m errors.
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approximated. For example, if p(n) is such that p(1) = p1,
p(2) = p2 and p(n) = 0 for n > 2 then Pf takes the follow-
ing form:

Pf
∼=
{

(p1)2

M
+ 2 · p1 · p2

M
+

p1 · p2

M

+ p1 · p2 ·
(

1 − 1
M

)
· 1
M − 1

+ (p2)2 ·
2
M

+ (p2)2 ·
(

1 − 2
M

)
· 2
M − 1

}

· (λ · ts)2
2

· e−λ·ts . (24)

The first term corresponds to the probability of two indepen-
dent SEUs, the next three to the probability of an SEU followed
by an MBU (or the other way around) and the last two to the
probability of two consecutive MBUs.

In case the SEU occurs first, the MBU can be seen as two
SEUs, the first one with probability 1/M of failure, while for
the second one the probability is that of not failing with the first
SEU, 1–(1/M ) but failing with the second one, 1/(M − 1) (by
our assumptions, the second SEU of an MBU can only fall in
M − 1 memory positions, excluding the register where the first
SEU of the MBU occurred).

A similar analysis is done for the case of two MBUs, consid-
ering the two SEUs within the second MBU. Regrouping terms
and approximating (M − 2)/(M − 1) as 1 we get

Pf
∼=
{

(p1)2

M
+ 4 · p1 · p2

M
+

p1 · p2

M

+
2 · (p2)2

M
+

M − 2
M − 1

· 2 · (p2)2

M

}
· (λ · ts)2

2
· e−λ·ts

∼= (p1 + 2 · p2)2

M

(λ · ts)2
2

· e−λ·ts

=
(1 + p2)2

M
· (λ · ts)2

2
· e−λ·ts . (25)

Assuming an arbitrary p(n) such that p(n) = 0 for n > m
and also that M � m, then following a similar derivation Pf

can be approximated as follows:

Pf
∼=(λ · ts)2

2
e−λ·ts

×
{

1
M

· p(1)2 + 2 · 2
M

· p(1) · p(2) + · · ·

+ 2 · m · (m − 1)
M

p(m) · p(m − 1) +
m2

M
p(m)2

}
.

(26)

This expression can be rewritten as

Pf
∼=

(
1 +

m∑
j=2

(j − 1) · pj

)2

M
· (λ · ts)2

2
· e−λ·ts . (27)

In the case of SEUs only, Pf takes the following form:

Pf |λSEU =
1
M

· (λ · ts)2
2

· e−λ·ts . (28)

It can be seen that the MBU case in (27) can be approximated
using (28) by modifying the arrival rate in the same way as
defined in (21)

λ′ = λ ·


1 +

m∑
j=2

(j − 1) · pj


 = λ · Q per

event
(29)

and also assuming that

1 ∼= e−λ′·ts < e−λ·ts . (30)

Therefore, combining (27) through (30)

Pf |λMBU
∼= 1

M
· (λ′ · ts)2

2
· e−λ·ts ∼= Pf |λ

′

SEU. (31)

With (30), Pf is being lower bounded. However, this can
be compensated if needed by multiplying (31) by e−(λ−λ′)·ts ,
making the approximation better.

Pf |λMBU
∼= 1

M
· (λ′ · ts)2

2
· e−λ·ts

=
1
M

· (λ′ · ts)2

2
· e−λ·ts

e−λ′·ts · e−λ′·ts

=Pf |λ
′

SEU · e−(λ−λ′)·ts . (32)

Finally, based on the above and following [5], the MTTF can
be approximated as

MTTF|λMBU
∼= 2 · M

λ2 ·
(

1 +
m∑

j=2

(j − 1) · pj

)2

· ts

=
2 · M(

λ · Q per
event

)2

· ts
=

2 · M
(λ′)2 · ts

= MTTF|λ′

SEU. (33)

As a conclusion, and in the same line with the previous
section, it has been proved that weighing the event arrival rate
λ with the Q per

event
factor, allows the use of the simpler SEUs

only parameters (Pf , MTTF) to approximate the MBU case
with scrubbing. This simplifies the problem, allowing designers
to account for the effects of MBUs in memories without a high
calculation overhead.

C. Effect of MBU Spatial Error Correlation on Reliability

In the previous analysis, it has been assumed that the errors
in an MBU occur in different memory positions and that those
positions are uncorrelated. This means that the first memory
position is chosen randomly among all M memory positions,
the second one is chosen randomly among the remaining
M − 1 memory positions and so on. This modeling enables the
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Fig. 1. Example of memory interleaving with L = 32 (cells with the same
number belong to the same logical word).

derivations presented in previous sections and can be justified
on the assumption that the use of interleaving will ensure that
errors fall on different memory positions and will randomize
their distribution. While the former is true in most cases (except
for MBUs with a very large number of errors), the latter is not
strictly true.

This is because the interleaving mechanism spreads the MBU
errors that are physically close among different logical words
separated following a fixed pattern (not a random one). For
example, the different bits forming a logical word are separated
L physical positions. In other words, logical bit 1 will be placed
in physical position 1, but logical bit 2 will be placed in physical
position L + 1, bit 3 in position 2·L + 1, etc. (see Fig. 1).

It is important to notice that the choice of L is critical in
this process, since it has to guarantee that logical words are
distributed away from the MBU action range. If, for example,
a vertical four-error MBU hits the memory in Fig. 1, bits in the
same logical word would be affected. This can be avoided by
carefully choosing L with respect to the memory width.

Let us consider an example where bits are located in this
way and where the distribution of errors per event is as follows:
p(1) = 0.5 and p(2) = 0.5. Suppose a case in which two MBUs
(with two errors each) occur in the memory. As mentioned
before, for simplicity, the errors of an MBU are assumed to
occur in contiguous bits of the same physical memory position
(note that although in a real situation the correlation pattern
would be more complex, as shown in [25], this would not
affect the validity of the reasoning). Since these bits belong to
different logical words, the errors will be corrected by the SEC
mechanism, and therefore, a single MBU will not produce a
failure.

Once the first MBU has happened, let us analyze the possi-
bilities of the second MBU producing a failure: the first error
of the second MBU strikes on the same bit affected by the first
(case 1) or second (case 2) error of the first MBU; or the second
error of the second MBU strikes on the same bit affected by
the first (case 3) or second (case 4) error of the first MBU. That,
assuming M � 1 as before, makes four cases producing failure
out of M (memory size). This reasoning, as mentioned before,
applies if errors are distributed randomly, but it does not hold if
the interleaving distribution pattern is considered.

Fig. 2. Illustration of spatial error correlation with interleaving: Logical view
of the memory and failing case study.

Let us assume (see Fig. 2) that the first MBU affects adjacent
physical bits 2 and 3 (which belong to different logical words).
Studying the previous scenarios where the second MBU pro-
duced a failure, it can be seen that cases 2 and 3 are independent
and distinct (case 2 would imply that the second MBU affects
bit 3 and 4; and case 3 that it affects bit 1 and 2). But cases 1
and 4 are strictly the same one, due to the fact that both errors
are not random or independent, but they are physically grouped
by the MBU: both cases imply that bit 2 and 3 are affected
simultaneously.

As a conclusion, there are three cases producing failure out of
M , not four as mentioned before. This has a clear effect on the
probability of failure, Pf , which would be reduced compared to
the result of (27), as follows:

If the spatial correlation is not considered, the failure cases
if two SEUs arrive are 1/M ; if an SEU comes followed
by a two-error MBU, 2/M (one case per each of the MBU
errors); again 2/M for an MBU followed by an SEU; and
4/M for two MBUs, as discussed before. Since p(1) = 0.5 and
p(2) = 0.5, each of the previous four cases has a probability
of 0.25. Therefore, Pf = (1 + 2 + 2 + 4)0.25/M = 2.25/M .
This is the same value obtained through expression (27).

Now, if the spatial correlation is taken into account as de-
scribed before, the failure cases of two MBUs are three, not
four, and therefore, Pf = (1 + 2 + 2 + 3)0.25/M = 2/M .

This produces a reduction of Pf of 2/2.25 in this case.
Let us study a more complex case to check that the conclu-

sions can be extrapolated. In this case, p1 = 0.5, p3 = 0.5 and
0 elsewhere.

If the spatial correlation is not considered and assuming
M � 1 as before, the failure cases if two SEUs arrive are
1/M ; if an SEU comes followed by a three-error MBU, 3/M
(one case per each of the MBU errors); again 3/M for an
MBU followed by an SEU; and 9/M for two triple MBUs.
Since p(1) = 0.5 and p(2) = 0.5, each of the previous four
cases has a probability of 0.25. Therefore, Pf = (1 + 3 + 3 +
9)0.25/M = 4/M .

If the spatial correlation is considered, the probability of
failure for the case of two triple MBUs changes: instead of
9/M , the new value is 5/M . This can be easily proved with
the previous spatial considerations. Therefore, Pf = (1 + 3 +
3 + 5)0.25/M = 3/M . The reduction of Pf is now of 3/4.

In a general case, where the correlation pattern of the er-
rors will be more complex as mentioned before, the effect
would be the same: the correlation of errors tends to pro-
duce multiple simultaneous failures and to reduce Pf , hence
resulting in an overall increase of the MTTF. This means that
the previous derivations are still lower bounds for the general
MBU case.
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TABLE I
MTTF FOR THE NONSCRUBBING CASE (IN SECONDS)

III. SIMULATION RESULTS

In the previous section, the reliability of a memory exposed
to MBUs has been analyzed deriving a lower bound for a
general case without scrubbing and an approximation for the
scrubbing case. In this section, simulation results are presented
to illustrate the previous models.

For the nonscrubbing case, some results are summarized
in Table I with word size N = 12; λ = 1/100 per word and
different memory sizes (M). The distribution of the number of
errors in an MBU is p(1) = 0.5, p(2) = 0.5 and zero elsewhere.
The information listed on the table is the following.

1) SEUs only with increased rate. This corresponds to the
MTTF calculated using the SEU model, with λ increased
as per (21). This should be a worst case (lower bound) for
the MTTF.

2) MBU independent errors. The errors in an MBU may
affect any logical word, since they are considered to
be independent. Therefore, they could affect the same
logical word simultaneously.

3) MBU errors on different registers (not correlated). The
errors in an MBU affect different logical words (due to the
effect of interleaving), but no spatial correlation among
them is considered.

4) MBU errors on different registers (correlated). Same case
as the previous one, but considering the spatial MBU
correlation explained in Section II-C.

The results are the average of 50 000 simulations. It can be
noted that the SEU configuration with increased arrival rate is
a worst case as predicted, and that as M grows, the difference
between the three first cases becomes smaller, as expected (they
become almost equal for M = 8192 or higher).

However, this is not true for the case of spatial correlation
caused by interleaving (last column). This is because the effect
reduces Pf always (for all values of m), and therefore there will
always be a difference with respect to the SEUs only case. For
example, let us consider a situation with n double MBUs and
n SEUs, n being an arbitrarily high number. That makes a total
number of errors present in the system of 3n, assuming M �
n. If another double MBU arrives afterward, the probability of
failure if no spatial correlation is considered would be 6n/M
(3n/M for each of the two errors in the MBU). However, if the
spatial correlation is considered, there will be a probability of
2n/M of failure with the errors produced by the n SEUs, but
only a probability of 3n/M with the n MBUs (not 4n/M ). The
reasoning behind this can be found in Section II-C. Combining
both cases, a probability of 5n/M will be obtained. Therefore,
if n tends to infinity, the probability ratio of both cases (without

Fig. 3. Simulation 1: Ratio of the MTTF of the different models versus SEUs
with increased rate.

TABLE II
MTTF FOR THE SCRUBBING CASE (IN SECONDS)

and with correlation) will be kept constant as 5/6, making the
MTTF of the latter higher.

In Fig. 3, the MTTF ratio of the different models with respect
to the base case of SEUs with increased rate is presented. It can
be seen that these ratios tend to 1, as predicted before, when M
grows. It can also be seen that this is not true for the case of the
spatial correlation, due to the reason previously explained.

The following simulation will study the effect of scrubbing
in the model. The parameters that have been used for the
simulation are: Ts = 0.1, N = 12, λ = 1/100 per word and
different memory sizes (M). The distribution of the num-
ber of errors in an MBU is p(1) = 0.5, p(2) = 0.5 and zero
elsewhere.

The listed information in Table II is similar to the one
presented in Table I, but in the third column, the approximation
given by (33) is included.

These results are the average of 10 000 simulations and are
in line with the derivations, as the MTTF for the SEU only
case (with increased arrival rate) is close to the MBU case with
uncorrelated errors and to the approximation given by (33). If
the correlation of the errors in an MBU is also considered (fifth
column), then the MTTF increases as predicted. The ratios of
the MTTFs for MBUs with correlated errors versus MBUs with
uncorrelated errors (fifth versus fourth columns) are, for each
value of M : 1.110, 1.113, 1.130 and 1.127. These are close to
the predicted ratio of 2.25/2 = 1.1250.

The different MTTF ratios of the models versus the base case
are presented in Fig. 4. Again, it can be seen that these ratios
tend to one, except for the spatial correlation case.
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Fig. 4. Simulation 2: Ratio of the MTTF of the different models versus SEUs
with increased rate.

Fig. 5. Simulation 3: Ratio of the MTTF of the different models versus SEUs
with increased rate.

Another set of simulations has been conducted for the
scrubbing case, in order to make sure that the results are
coherent. This time, the following parameters have been used:
p(1) = 0.5, p(3) = 0.5 and zero elsewhere, and λ = 1/1000
per word.

In Fig. 5, the different MTTF ratios are depicted. Again, the
conclusions are similar to the ones presented in the previous
simulations.

The results are depicted in Table III, which corroborates the
same conclusions extracted from Table II. The ratios of the
MTTFs for MBUs with correlated errors versus MBUs with
uncorrelated errors (fifth versus fourth columns) are, for each
value of M : 1.13, 1.24, 1.27, and 1.34, which are close to the
predicted ratio 4/3 = 1.33 for values of M � 1. For smaller
values, the ratio is also smaller due to the approximation made
in deriving (27).

Finally, it is also worth considering a realistic case to evaluate
the effects of MBUs in existing memories. In [31], a 4-Mb

TABLE III
MTTF FOR THE SCRUBBING CASE (IN SECONDS)

SRAM manufactured in a 90-nm process is characterized,
showing that MBUs account for only a few percentage of error
events. It is also shown that events with a greater number of
errors are less likely to happen. Taking all this into account, we
propose to use a per event error distribution that follows ex-
pression (2), with r = 0.05. This results in an average number
of errors per event of 1.0526. This is the factor that must be
considered according to the presented models to compute λ′,
which in turn is used to get the MTTF through (23) and (33),
for the nonscrubbing and scrubbing cases, respectively.

To show the impact of MBUs, we can compare the results
given by (23) and (33) when:

1) λ is used and therefore multiple errors are not accounted
for (the MBUs are modeled as SEUs).

2) λ′ is used and therefore the MBUs are modeled in a
conservative way.

In the nonscrubbing case, the ratio of the MTTFs would be
0.95, which is a 5% decrease of the MTTF when MBUs are
considered. In the scrubbing case, the ratio would be 0.90, or a
10% decrease of the MTTF. Taking into account that (23) and
(33) give conservative estimates for the MTTF, we can conclude
that in the worst case, the impact of MBUs on the MTTF would
be below 10% for this given memory.

This example shows that MBUs still have a limited impact on
current memories. However, as technology advances to smaller
geometries, the proportion of MBUs will increase [26] and will
become a more important factor for memory reliability.

IV. CONCLUSION AND FUTURE WORK

In this paper, an analysis of the effects of MBUs on the
reliability of memories protected with SEC codes and interleav-
ing has been presented. The main contributions of this paper
are: first, a general expression for the MTTF of a memory
exposed to MBUs has been derived; and second, some ap-
proximations have been presented that enable the designer to
evaluate the MTTF of a memory exposed to MBUs with the
existing expressions used to analyze the case of SEUs. The
proposed approximations are also lower bounds to the MTTF,
and therefore they can be safely used in the evaluation of
memories.

As part of this paper, some interesting effects of MBUs when
compared to SEUs have been studied: first, the fact that errors
in an MBU come grouped; second, the errors within an MBU
are assumed to fall on different logical words; and finally, the
correlation introduced by the interleaving pattern. All these
have been shown to have an effect on the reliability of the
memory.
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For future work, evaluating the proposed approximations
on real memories is the natural extension of this paper. This
will imply to actually radiate memory samples using a particle
accelerator (or alternative technology, e.g., a laser beam). The
experiments should first characterize the p(n) for the memory
under test and the physical event causing the upsets, then
compute the theoretical approximations. Finally, controlling the
event rate and monitoring the faults would provide the results
for the comparison. This will validate the presented models,
and will be useful to introduce corrections if needed. These
experiments would also help to illustrate how the MBU spatial
correlation (discussed for a simplified case in this paper) would
affect the MTTF in a real case.

APPENDIX

In this Appendix, the proof that the relation between MTTF
and METF in (18) is valid in this case, is presented.

Let us define the random variable TTF that denotes the time
to failure, which can be expressed as

TTF =
g∑

i=1

xi (34)

where, xi are the random variables that denote the time between
events. As per the assumptions that the events arrive with a
Poissonian basis, and therefore the xi are independent and
identically distributed random variables, then Wald’s identity
can be applied to get

MTTF = E[TTF] = E

[
g∑

i=1

xi

]
= E[g] · E[xi]. (35)

Considering that the mathematical expectation of TTF is
MTTF, the expectation of the number of events (g) to failure is
METF, and the expectation of the time between events is 1/λ,
then the traditional relationship between METF and MTTF is
obtained

MTTF =
METF

λ
. (36)
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