
 

 

Performance Analysis and Improvements for a 
Simulation-based Fault Injection Platform  

 
O. Ruano, J.A. Maestro, P. Reviriego 

Dept. Ingeniería Informática -Universidad Antonio de Nebrija 
Madrid, Spain 

Email: {oruano, jmaestro, previrie}@nebrija.es 
 
Abstract—In this paper, we study and present two techniques to 
improve the performance of a simulation-based fault injection 
platform that inserts bit flips in order to model soft errors on digital 
circuits. The platform is based on the ESA Data Systems Division’s 
SEE Simulation Tool. In contrast with methods based on emulation, 
the proposed approach reduces the complexity and costs, supplying 
a test environment with the same reliability as emulation systems. 
Only one disadvantage appears when comparing both 
methodologies: the lower performance of the simulation in cases 
where the fault injection campaigns are very large. Two proposals 
have been developed in order to address this drawback: the first one 
is based on software (through checkpoints) and the second one uses 
parallel computation. 
 
 
 

I. INTRODUCTION1 
 

Microelectronic circuits that have to operate in harsh 
environments, like space or nuclear reactors, are exposed to the 
radiation effects which produce certain risks [1]. One type of 
hazard is Single Event Effects (SEEs) that cause changes in the 
values of flips-flops (SEUs) or combinational logic (SETs). In 
order to guarantee the circuit reliability, designers of rad-hard 
systems have two choices: Radiation Hardening by Process 
(RHBP) and Radiation Hardening by Design (RHBD) [2]. The 
first option includes physical techniques that must change the 
manufacture process like shielding or silicon on insulator (SOI). 
One alternative with less cost is to use standard CMOS with no 
additional masks, providing hard memory elements like HIT cells 
[3]. Today’s relatively small market for radtolerant components 
makes it difficult for the few remaining suppliers to offer 
economical solutions. This has prompted designers to use the 
second choice: radiation-hardening-by-design (RHBD) approach. 
In RHBD, electronic components are manufactured to meet 
specified radiation performance criteria, but the techniques 
employed to meet these criteria are implemented either in layout 
or in the application architecture and not in the fabrication 
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process. This methodology applies, to make resilient designs, 
some well-known general hardening techniques like the use of 
redundancy [4] (Triple Modular Redundancy, TMR) or EDAC 
codes (parity, hamming). Another alternative consists in 
implementing specific techniques applying the “system 
knowledge” that increases the efficiency respect to the 
conventional techniques mentioned above [5]. To check those 
techniques, designers usually require mechanisms to simulate 
their implementations and study the effect of possible SEEs. 
Fault Injection is a feasible practice to achieve this purpose. 
Although there are several kinds of fault-injection, this paper will 
focus on the so-called software-based injection. Several examples 
presented in literature can be found in the related work section. 
Focusing on the simulation platform used in this paper (see Fig. 
1) [6], the main advantages that can be highlighted are:  
 

• Analysis in the firsts steps of the design cycle.  
• Suitable when a prototype is not available. 
• Capable of injecting faults into both synthesizable and 

non-synthesizable models.  
• Good controllability: where and when a fault is injected.  
• Observability: capable to monitor internal events. 
• Easy and free distribution to the research community.  

 
Conversely, the drawback is the high CPU time spent to simulate 
the model. This paper addresses some techniques to reduce the 
simulation time required by the platform to run the fault injection 
campaigns when studying the behaviour of the designs in the 
presence of SEEs.  
The first exploits the simulator features and the second one 
implements a parallel system to perform the campaign 
computation. To assess the success of both techniques, we have 
performed fault injection experiments on an Intel i8051 
microcontroller executing an elliptic filter.  
The rest of the paper is organized as follow: related work is 
discussed in Section II. Section III describes briefly the 
architecture of the simulation system and its principles.  
Section IV presents a performance analysis for several campaigns 
for an elliptic filter. Section V explains in depth the proposed 
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Fig. 1 Proposed Error Simulation Platform. 
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approaches. Finally, in Section VI conclusions and future work 
are presented. 
 

II.  RELATED WORK 

 
Fault injection is a widely used technique for fault tolerance 
evaluation. The fault injection techniques presented in literature 
have been implemented using hardware as well as software 
techniques [7]-[14]. A hardware approach consists of injecting 
physical faults into the target system hardware. These methods 
have the advantage of causing errors which may be close to a 
realistic fault. However, these approaches require special 
hardware and the injector tools are dedicated to a specific target. 
The main problem is the complexity to control and observe the 
fault effects that usually requires an I/O comparison cycle by 
cycle between the tested system and a non exposed twin system. 
In [7][8], a framework under the name of FT-UNSHADES has 
been developed in collaboration with ESA Data Division System. 
It is composed of two Xilinx FPGAs where the main one is a 
Virtex II capable of holding two parallel implementations of 
design and the second one is a SPARTAN-3 which acts as fast 
bridge between the injector software and the Virtex. The main 
feature is readback mechanism and the partially read and written 
configuration memory.  
In [9], an emulation-based platform has been developed, and the 
principle is similar to the FT-UNSHADES: internal partial 
reconfiguration feature. It is composed of an FPGA board 
equipped with a Virtex II-Pro device, and a serial communication 
link to the host computer that acts as injector of faults. This 
system takes advantage of the new internal Configuration Access 
Port provided by last generation of Xilinx FPGAs called ICAP, 
to improve the partial reconfiguration.  
In [10], fault injection is carried out at the pin level to measure 
fault latency in multiprocessor systems. As a disadvantage, it 
requires a special hardware to inject faults. . 
However, in [11], an environment for controlling the injection of 
faults in a distributed system is implemented, where their 
experiments show the feasibility of software techniques for the 
validation of systems.  
In [12], a software fault injection and monitoring environment is 
presented on a parallel machine build around PARIX operating 
system called Xception.  
In [13], a software tool is developed on a SPARC workstation for 
the validation of fault tolerant computer system under the name 
of FERRARI. 
Finally, in [14], a fault injection environment, called HYBRID is 
presented. Faults are injected in memory via software and extra 
hardware is used to trace fault activation and propagation in the 
target system. 
The technique proposed in the present paper is framed within the 
software-based simulation mechanisms where the design is 
simulated with a Hardware Description Language like VHDL or 

Verilog, and the upsets are injected through a test bench designed 
for this purpose via software. 
 
 

III. DESCRIPTION OF THE SIMULATION PLATFORM 

 
The motivation behind the development of this platform is the 
need for a flexible and powerful fault injection system to help the 
designers to predict and explore potential weak points on ICs 
sensitive to hazards [5]. It can also be used to assess the 
effectiveness of a given protection technique [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It works together with a commercial simulator (ModelSim 
version 6.3) using the built commands and capabilities of the 
simulator engine. In addition to the advantages of the simulation 
injection systems showed in the introduction this method 
minimizes the intrusiveness  
 
 

IV. PERFORMANCE ANALYSIS 

 
A first experiment has been conducted in order to prove the low 
performance associated to the platform when no improvements 
are applied. The i8051 has been used through a VHDL 
description at the register-transfer level (RTL). We have 
considered a first fault model composed by a single bit-flip per 
simulation (99999 clock cycles and a 100-MHz frequency), 
running on one PC with an Intel(R) Pentium(R) M processor at 
2.00 GHz and a 1Gb RAM. This fault model has been inserted in 
both the RAM and ROM memories of the processor. 
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TABLE I: EXPERIMENTAL RESULTS OR THE SST SIMULATION PERFORMANCE (IN 
SECONDS) 

 
Campaign Size TIME [sec] 

10 SEUs 2.73 
200 SEUs 53.26 

1,000 SEUs 265.29 
2,000 SEUs 531.51 
4,000 SEUs 1063.43 
7,000 SEUs 1866.20 

10,000 SEUs 2672.70 

BENCHMARK 
Elliptic Filter 

100,000 SEUs 26629.62 
 
Several tests have been carried out experimentally applying 
different campaigns composed of several simulations, and 
therefore several SEUs. The CPU times spent by the platform are 
shown in Table I. It is interesting to analyze the behavior of the 
platform in extreme conditions (e.g. the 100000-SEU campaign) 
where 7,4 hours were needed to perform the injection. This 
proves the low performance of the platform under these 
circumstances, especially noticeable when compared with HW-
based systems, like the one in [15]. 
In order to mitigate this weakness (common to any simulation-
based fault injection system), two enhancements will be 
presented and studied both in an analytical and experimental 
way: i) the use of checkpoints (a usual feature in VHDL 
simulators) and ii) parallelism as a technique to improve 
computation. 
 

V. PROPOSED APPROACHES 

 
In order to address the performance issues common to any 
simulation-based fault injection system, two techniques are 
proposed:  
 

• The first technique exploits checkpoint features supplied 
by modern VHDL simulators.  

• The second technique uses several CPUs in order to 
speed-up simulations. 

 
A. First optimization: Checkpoints  
 
This section presents an optimization to improve the simulation 
time of the platform based on the simulator checkpoint feature. In 
this way, we take advantage of the possibility to store the 
simulation state at a certain time, and then restore it later. This 
means that if a SEU needs to be injected at the end of a long 
simulation (of Tsim seconds, see Fig. 2), a first execution will 
happen at the beginning (up to the injection point), and then the 
simulation state would be saved. 
 
 
 

 
 
Later, if several experiments have to be conducted, that state 
could be restored (consuming Trestore seconds), and only the final 
parts of the simulations would have to be run (needing only T’ 
seconds). Obviously, in order to make this technique efficient, 
the following inequality must be met:  
 

simrestore TTT <+ '                                                                        (1) 
 
In order to evaluate the effectiveness of this approach, we have 
carried out an experiment on the elliptic filter benchmark. For 
this experiment, the specific case of 10000 SEUs has been 
considered, with a simulation campaign of 99999 cycles and a 
100-MHz frequency, running on the same PC described before. 
The first column of Table II shows the CPU simulation time for 
the 10000 SEUs without any optimization. The second and third 
columns illustrate the new times obtained with the added 
checkpoint optimization. Both differ in the time where the 
checkpoint was inserted: in the first case (T1=Trestore1+T1’) the 
checkpoint is located at 3/4 of the simulation and in the second 
case (T2=Trestore2+T2’), almost at the end of the simulation (in 
both cases the SEUs were inserted at the end of the simulation). 
The next columns show the achieved performance speedup (SUn 
= Tini/Tn) and the percentage of improvement produced by that 
speedup. 
 

TABLE II: CHECKPOINT OPTIMIZATION FOR 10000 SEUS 
 

Benchmark Tsim 
[sec] 

T1 
[sec] 

T2  
[sec] SU1 SU2 

Elliptic Filter 2672.71 2490.93 1994.86 1.072 1.347 

Improvement [%] 7.2% 34.7% 

 
 
The results obtained in Table II are promising and show a 
significant improvement in performance. An improvement of 
7.2% has been obtained in the less favourable case, SU1. In the 
best case, SU2, the improvement has increased to 34.7%. In 

Tsim 

Trestore T’
T 

Save checkpoint 

Restore checkpoint 

(T=Trestore+T’) < Tsim 

SEU

Figure 2: Checkpoint Optimization.  
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summary, the most beneficial cases happen when the checkpoint 
is as close as possible to the SEU appearance. However, if the 
SEU appears early enough in the simulation, the Trestore penalty 
when using the checkpoint can make the overall time worse. 
Therefore, a detailed study should be made for each particular 
fault injection campaign, in order to find out where and how 
many checkpoints need to be added to get an optimal 
performance. The results obtained with this technique are 
depicted in Fig. 3. 
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Fig. 3: Checkpoint results. 

 
B. Second optimization: Parallelism 
 
This section presents an optimization oriented to large fault 
injection campaigns based on parallelism. Parallel simulation is 
used for tasks which require very large amounts of computation 
and has been traditionally motivated by numerical simulations of 
complex systems such as weather and climate, chemical and 
nuclear reactions, biological (human genome), electronic circuits 
[16], etc. In our case, it has been motivated by the large 
computational time needed when the fault injection campaigns 
involve a large number of fault injections on a complex circuit. 
By dividing the injection campaign among a number of PCs, 
several benefits can be achieved:  
 

• Save computation time.  
• Being able to tackle large simulation campaigns.  
• Cost savings, taking advantage of non-local resources 

using available computers in a network. 
 
 
The most appropriate model for this problem is a distributed 
system architecture. The initial simulation campaign is divided 
into smaller parts by a central node (dispatcher), and then 

distributed to the rest of computers, which perform the 
simulation and return the results back to the central processor, 
through a message-passing model. This type of problem is called 
embarrassingly parallel because very little task interaction is 
required, and therefore the time overhead introduced by 
parallelism is limited, making the model purely scalable. 
 
Based on this architecture, our purpose is to evaluate the 
performance of the analytical model and validate it through some 
fault injection experiments made on a network built on a star 
topology. In parallelism, the use of the highest number of 
processors in order to increase the parallel speedup may not be 
feasible due to the overhead introduced by communications, as 
mentioned before. In other words, adding an extra processor to a 
system with n nodes may not result in a performance increase, 
since the communication time generated by this extra node with 
the rest of the system may be larger than the computation time 
saved by introducing it. This is the reason why it is so important 
to study the scalability of the system, or on technical words, the 
isoefficiency. This refers to a parallel system ability to 
proportionately increase the parallel speedup when new 
processors are added. According to [17], the efficiency (E) of this 
type of systems must be kept constant, O(1), in order to be 
scalable:  
 

)1(
.

Ο==
p

S

Tp
T

E                                                                         (2)

where Ts  is the simulation time in one processor and Tp is the 
time in the distributed system when it uses p processors. This 
implies that the work of solving the problem in a parallel system 
should have the same asymptotic growth (when the simulation 
size increases) as the sequential algorithm in a single processor:  
 

).()( ps TpOTO =                                                                     (3) 
 
This is what we need to prove in order to conclude that the 
provided solution is independent of (not limited by) the size of 
the problem (in number of SEUs). 
Starting from a problem size equal to n (iterations-SEUs) and p 
processors, the parallel time will be 

 
commsosp TpTTTTp ⋅+=+=⋅                                       (4) 

 

comm
sos

p T
p

T
p

T
p

T
T +=+=                                                   (5) 

 
where sT  is the serial time (one processor), oT  is the total 

overhead time for a parallel system and commT  is the 
communication time between two nodes: 
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In the previous section, it has been experimentally proved that 
the serial time is a linear function (see Table I), so:  
 

BnATs +=                                                                         (7) 
 

)()( nOTO S =                                                                      (8)  
 
Now, we have to study the asymptotic growth of PTp ⋅  (see 
(4)): 
 

( ) ( ))(·),(max·)( commscommsp TOpTOTpTOTpO =+=⋅                    (9) 

 
The complexity of the first term is known, so the next step will 
be to experimentally study the magnitude of commT  on the star 
topology network using a different number of machines (2, 3 and 
4 machines respectively). In this case, the different machines in 
the network are Pentium 2.40 GHz with 256 Mb RAM. 
 
The experimental results prove that the communication time 
between the dispatcher and any node is constant, regardless of 
the number of PCs and the size of the experiment (number of 
SEUs). This is reasonable since i) nodes do not interact among 
them (only with the dispatcher, and therefore increasing the 
number of nodes should not affect communications) and ii) the 
simulation script sent from the dispatcher to the nodes is 
independent of the number of SEUs that are injected. Therefore, 
it can be concluded that O(Tcomm) = O(1), i.e., it is constant. 
Now, (9) can be rewritten as:  
 

( ) ( ))1(·),(max·)( OpnOTpTOTpO commsp =+=⋅                          (10) 
 
And since n >> p always (more SEUs injected than PCs), then  
 

)().( nOTpO p =                                                                 (11) 
 
Combining (8) and (11) it is clear that (3) is met, and therefore 
the system is isoefficient. This means that no matter how large 
the SEU campaign is, it will always be possible to add a new PC 
that will help to keep the simulation time feasible bounded, in 
spite of the communication overhead that this new PC may 
introduce. A different issue is the saturation level of the 
dispatcher, whose performance can decrease when a large 
number of nodes are added. However, since the interaction 
among nodes is so light, the number of processors to produce this 

problem is so large that should not be an issue for the proposed 
methodology.  
In Table III, the simulation times obtained for different PCs and 
several SEU campaigns are depicted. It is seen that, in general, 
this simulation time decreases as more PCs are used, what is very 
convenient for large SEU campaigns. However, there is one 
exception: in the case of 10 SEUs, the results are worse when 
new PCs are added. This is reasonable, since in this case n (10 
SEUs) is low enough so that the relation n >> p is not met. In the 
other cases, the results obtained show a significant improvement 
in performance. A sample of this could be the improvement 
obtained in the case of 10,000 SEUs, which is around 194% for 4 
processors. 
 

TABLE III: SIMULATION TIMES (IN SECONDS) FOR DIFFERENT NUMBER OF PCS 
AND SEUS 

 
Benchmark 

Elliptic Filter 1 PC 2 PCs 3 PCs 4 PCs 

10 SEUs 2.70 4.49 5.19 5.50 
100 SEUs 27.33 18.43 15.70 13.99 
200 SEUs 53.60 35.93 28.22 23.19 

1,000 SEUs 266.45 162.98 132.34 99.10 
10,000 SEUs 2689.35 1593.12 1275.37 915.01 
100,000 SEUs 26637.25 16688.84 11463.37 9008.29 

 
 
The results in Table III are graphically depicted in Fig. 4, where 
the time optimizations can be seen for the different number of 
nodes. 
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Fig. 4: Parallelism results. 
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VI. CONCLUSIONS AND FUTURE WORK 

 
In this paper, new proposals to improve the performance of the 
SST simulation-based fault injection platform have been 
presented. These new techniques have been developed using 
both the features supplied by the ModelSim 6.3 simulator and 
parallel computation through a distributed system. The benefits 
of applying these methodologies are clearly proved with the 
experimental results that have been obtained, increasing the 
platform performance, and therefore being able to face larger 
injections campaign. The use of this simulation environment that 
enables a flexible testing of the effects of SEUs will facilitate 
the future work, which will focus on the comparison between 
the SST injection results and real radiation tests, in order to 
measure the error rate prediction of the platform.  
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