

Performance Analysis and Improvements for a
Simulation-based Fault Injection Platform

O. Ruano, J.A. Maestro, P. Reviriego

Dept. Ingeniería Informática -Universidad Antonio de Nebrija
Madrid, Spain

Email: {oruano, jmaestro, previrie}@nebrija.es

Abstract—In this paper, we study and present two techniques to
improve the performance of a simulation-based fault injection
platform that inserts bit flips in order to model soft errors on digital
circuits. The platform is based on the ESA Data Systems Division’s
SEE Simulation Tool. In contrast with methods based on emulation,
the proposed approach reduces the complexity and costs, supplying
a test environment with the same reliability as emulation systems.
Only one disadvantage appears when comparing both
methodologies: the lower performance of the simulation in cases
where the fault injection campaigns are very large. Two proposals
have been developed in order to address this drawback: the first one
is based on software (through checkpoints) and the second one uses
parallel computation.

I. INTRODUCTION1

Microelectronic circuits that have to operate in harsh
environments, like space or nuclear reactors, are exposed to the
radiation effects which produce certain risks [1]. One type of
hazard is Single Event Effects (SEEs) that cause changes in the
values of flips-flops (SEUs) or combinational logic (SETs). In
order to guarantee the circuit reliability, designers of rad-hard
systems have two choices: Radiation Hardening by Process
(RHBP) and Radiation Hardening by Design (RHBD) [2]. The
first option includes physical techniques that must change the
manufacture process like shielding or silicon on insulator (SOI).
One alternative with less cost is to use standard CMOS with no
additional masks, providing hard memory elements like HIT cells
[3]. Today’s relatively small market for radtolerant components
makes it difficult for the few remaining suppliers to offer
economical solutions. This has prompted designers to use the
second choice: radiation-hardening-by-design (RHBD) approach.
In RHBD, electronic components are manufactured to meet
specified radiation performance criteria, but the techniques
employed to meet these criteria are implemented either in layout
or in the application architecture and not in the fabrication

This work was supported by the Spanish Ministry of Education and Science under
Grant ESP-2006-04163.

process. This methodology applies, to make resilient designs,
some well-known general hardening techniques like the use of
redundancy [4] (Triple Modular Redundancy, TMR) or EDAC
codes (parity, hamming). Another alternative consists in
implementing specific techniques applying the “system
knowledge” that increases the efficiency respect to the
conventional techniques mentioned above [5]. To check those
techniques, designers usually require mechanisms to simulate
their implementations and study the effect of possible SEEs.
Fault Injection is a feasible practice to achieve this purpose.
Although there are several kinds of fault-injection, this paper will
focus on the so-called software-based injection. Several examples
presented in literature can be found in the related work section.
Focusing on the simulation platform used in this paper (see Fig.
1) [6], the main advantages that can be highlighted are:

• Analysis in the firsts steps of the design cycle.
• Suitable when a prototype is not available.
• Capable of injecting faults into both synthesizable and

non-synthesizable models.
• Good controllability: where and when a fault is injected.
• Observability: capable to monitor internal events.
• Easy and free distribution to the research community.

Conversely, the drawback is the high CPU time spent to simulate
the model. This paper addresses some techniques to reduce the
simulation time required by the platform to run the fault injection
campaigns when studying the behaviour of the designs in the
presence of SEEs.
The first exploits the simulator features and the second one
implements a parallel system to perform the campaign
computation. To assess the success of both techniques, we have
performed fault injection experiments on an Intel i8051
microcontroller executing an elliptic filter.
The rest of the paper is organized as follow: related work is
discussed in Section II. Section III describes briefly the
architecture of the simulation system and its principles.
Section IV presents a performance analysis for several campaigns
for an elliptic filter. Section V explains in depth the proposed

2299978-1-4244-1666-0/08/$25.00 '2008 IEEE

SST

VHDL Design

Test Bench
Comparator Log

Modelsim 6.1

SEU’s

Behaviour
with SEUs
 Inputs

Fig. 1 Proposed Error Simulation Platform.

Gold
 behaviour

approaches. Finally, in Section VI conclusions and future work
are presented.

II. RELATED WORK

Fault injection is a widely used technique for fault tolerance
evaluation. The fault injection techniques presented in literature
have been implemented using hardware as well as software
techniques [7]-[14]. A hardware approach consists of injecting
physical faults into the target system hardware. These methods
have the advantage of causing errors which may be close to a
realistic fault. However, these approaches require special
hardware and the injector tools are dedicated to a specific target.
The main problem is the complexity to control and observe the
fault effects that usually requires an I/O comparison cycle by
cycle between the tested system and a non exposed twin system.
In [7][8], a framework under the name of FT-UNSHADES has
been developed in collaboration with ESA Data Division System.
It is composed of two Xilinx FPGAs where the main one is a
Virtex II capable of holding two parallel implementations of
design and the second one is a SPARTAN-3 which acts as fast
bridge between the injector software and the Virtex. The main
feature is readback mechanism and the partially read and written
configuration memory.
In [9], an emulation-based platform has been developed, and the
principle is similar to the FT-UNSHADES: internal partial
reconfiguration feature. It is composed of an FPGA board
equipped with a Virtex II-Pro device, and a serial communication
link to the host computer that acts as injector of faults. This
system takes advantage of the new internal Configuration Access
Port provided by last generation of Xilinx FPGAs called ICAP,
to improve the partial reconfiguration.
In [10], fault injection is carried out at the pin level to measure
fault latency in multiprocessor systems. As a disadvantage, it
requires a special hardware to inject faults. .
However, in [11], an environment for controlling the injection of
faults in a distributed system is implemented, where their
experiments show the feasibility of software techniques for the
validation of systems.
In [12], a software fault injection and monitoring environment is
presented on a parallel machine build around PARIX operating
system called Xception.
In [13], a software tool is developed on a SPARC workstation for
the validation of fault tolerant computer system under the name
of FERRARI.
Finally, in [14], a fault injection environment, called HYBRID is
presented. Faults are injected in memory via software and extra
hardware is used to trace fault activation and propagation in the
target system.
The technique proposed in the present paper is framed within the
software-based simulation mechanisms where the design is
simulated with a Hardware Description Language like VHDL or

Verilog, and the upsets are injected through a test bench designed
for this purpose via software.

III. DESCRIPTION OF THE SIMULATION PLATFORM

The motivation behind the development of this platform is the
need for a flexible and powerful fault injection system to help the
designers to predict and explore potential weak points on ICs
sensitive to hazards [5]. It can also be used to assess the
effectiveness of a given protection technique [6].

It works together with a commercial simulator (ModelSim
version 6.3) using the built commands and capabilities of the
simulator engine. In addition to the advantages of the simulation
injection systems showed in the introduction this method
minimizes the intrusiveness

IV. PERFORMANCE ANALYSIS

A first experiment has been conducted in order to prove the low
performance associated to the platform when no improvements
are applied. The i8051 has been used through a VHDL
description at the register-transfer level (RTL). We have
considered a first fault model composed by a single bit-flip per
simulation (99999 clock cycles and a 100-MHz frequency),
running on one PC with an Intel(R) Pentium(R) M processor at
2.00 GHz and a 1Gb RAM. This fault model has been inserted in
both the RAM and ROM memories of the processor.

2300

TABLE I: EXPERIMENTAL RESULTS OR THE SST SIMULATION PERFORMANCE (IN
SECONDS)

Campaign Size TIME [sec]

10 SEUs 2.73
200 SEUs 53.26

1,000 SEUs 265.29
2,000 SEUs 531.51
4,000 SEUs 1063.43
7,000 SEUs 1866.20

10,000 SEUs 2672.70

BENCHMARK
Elliptic Filter

100,000 SEUs 26629.62

Several tests have been carried out experimentally applying
different campaigns composed of several simulations, and
therefore several SEUs. The CPU times spent by the platform are
shown in Table I. It is interesting to analyze the behavior of the
platform in extreme conditions (e.g. the 100000-SEU campaign)
where 7,4 hours were needed to perform the injection. This
proves the low performance of the platform under these
circumstances, especially noticeable when compared with HW-
based systems, like the one in [15].
In order to mitigate this weakness (common to any simulation-
based fault injection system), two enhancements will be
presented and studied both in an analytical and experimental
way: i) the use of checkpoints (a usual feature in VHDL
simulators) and ii) parallelism as a technique to improve
computation.

V. PROPOSED APPROACHES

In order to address the performance issues common to any
simulation-based fault injection system, two techniques are
proposed:

• The first technique exploits checkpoint features supplied
by modern VHDL simulators.

• The second technique uses several CPUs in order to
speed-up simulations.

A. First optimization: Checkpoints

This section presents an optimization to improve the simulation
time of the platform based on the simulator checkpoint feature. In
this way, we take advantage of the possibility to store the
simulation state at a certain time, and then restore it later. This
means that if a SEU needs to be injected at the end of a long
simulation (of Tsim seconds, see Fig. 2), a first execution will
happen at the beginning (up to the injection point), and then the
simulation state would be saved.

Later, if several experiments have to be conducted, that state
could be restored (consuming Trestore seconds), and only the final
parts of the simulations would have to be run (needing only T’
seconds). Obviously, in order to make this technique efficient,
the following inequality must be met:

simrestore TTT <+ ' (1)

In order to evaluate the effectiveness of this approach, we have
carried out an experiment on the elliptic filter benchmark. For
this experiment, the specific case of 10000 SEUs has been
considered, with a simulation campaign of 99999 cycles and a
100-MHz frequency, running on the same PC described before.
The first column of Table II shows the CPU simulation time for
the 10000 SEUs without any optimization. The second and third
columns illustrate the new times obtained with the added
checkpoint optimization. Both differ in the time where the
checkpoint was inserted: in the first case (T1=Trestore1+T1’) the
checkpoint is located at 3/4 of the simulation and in the second
case (T2=Trestore2+T2’), almost at the end of the simulation (in
both cases the SEUs were inserted at the end of the simulation).
The next columns show the achieved performance speedup (SUn
= Tini/Tn) and the percentage of improvement produced by that
speedup.

TABLE II: CHECKPOINT OPTIMIZATION FOR 10000 SEUS

Benchmark Tsim
[sec]

T1
[sec]

T2
[sec] SU1 SU2

Elliptic Filter 2672.71 2490.93 1994.86 1.072 1.347

Improvement [%] 7.2% 34.7%

The results obtained in Table II are promising and show a
significant improvement in performance. An improvement of
7.2% has been obtained in the less favourable case, SU1. In the
best case, SU2, the improvement has increased to 34.7%. In

Tsim

Trestore T’
T

Save checkpoint

Restore checkpoint

(T=Trestore+T’) < Tsim

SEU

Figure 2: Checkpoint Optimization.

2301

summary, the most beneficial cases happen when the checkpoint
is as close as possible to the SEU appearance. However, if the
SEU appears early enough in the simulation, the Trestore penalty
when using the checkpoint can make the overall time worse.
Therefore, a detailed study should be made for each particular
fault injection campaign, in order to find out where and how
many checkpoints need to be added to get an optimal
performance. The results obtained with this technique are
depicted in Fig. 3.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

Number of SEUs

T
im

e
[s

ec
]

Checkpoint Optimization

Without optimization [experimental]
Estimated data
First case optimization: T1 [experimental]
Estimated data
Second case optimization: T2 [experimental]
Estimated data

Fig. 3: Checkpoint results.

B. Second optimization: Parallelism

This section presents an optimization oriented to large fault
injection campaigns based on parallelism. Parallel simulation is
used for tasks which require very large amounts of computation
and has been traditionally motivated by numerical simulations of
complex systems such as weather and climate, chemical and
nuclear reactions, biological (human genome), electronic circuits
[16], etc. In our case, it has been motivated by the large
computational time needed when the fault injection campaigns
involve a large number of fault injections on a complex circuit.
By dividing the injection campaign among a number of PCs,
several benefits can be achieved:

• Save computation time.
• Being able to tackle large simulation campaigns.
• Cost savings, taking advantage of non-local resources

using available computers in a network.

The most appropriate model for this problem is a distributed
system architecture. The initial simulation campaign is divided
into smaller parts by a central node (dispatcher), and then

distributed to the rest of computers, which perform the
simulation and return the results back to the central processor,
through a message-passing model. This type of problem is called
embarrassingly parallel because very little task interaction is
required, and therefore the time overhead introduced by
parallelism is limited, making the model purely scalable.

Based on this architecture, our purpose is to evaluate the
performance of the analytical model and validate it through some
fault injection experiments made on a network built on a star
topology. In parallelism, the use of the highest number of
processors in order to increase the parallel speedup may not be
feasible due to the overhead introduced by communications, as
mentioned before. In other words, adding an extra processor to a
system with n nodes may not result in a performance increase,
since the communication time generated by this extra node with
the rest of the system may be larger than the computation time
saved by introducing it. This is the reason why it is so important
to study the scalability of the system, or on technical words, the
isoefficiency. This refers to a parallel system ability to
proportionately increase the parallel speedup when new
processors are added. According to [17], the efficiency (E) of this
type of systems must be kept constant, O(1), in order to be
scalable:

)1(
.

Ο==
p

S

Tp
T

E (2)

where Ts is the simulation time in one processor and Tp is the
time in the distributed system when it uses p processors. This
implies that the work of solving the problem in a parallel system
should have the same asymptotic growth (when the simulation
size increases) as the sequential algorithm in a single processor:

).()(ps TpOTO = (3)

This is what we need to prove in order to conclude that the
provided solution is independent of (not limited by) the size of
the problem (in number of SEUs).
Starting from a problem size equal to n (iterations-SEUs) and p
processors, the parallel time will be

commsosp TpTTTTp ⋅+=+=⋅ (4)

comm
sos

p T
p

T
p

T
p

T
T +=+= (5)

where sT is the serial time (one processor), oT is the total

overhead time for a parallel system and commT is the
communication time between two nodes:

2302

p
T

T o
comm = (6)

In the previous section, it has been experimentally proved that
the serial time is a linear function (see Table I), so:

BnATs += (7)

)()(nOTO S = (8)

Now, we have to study the asymptotic growth of PTp ⋅ (see
(4)):

() ())(·),(max·)(commscommsp TOpTOTpTOTpO =+=⋅ (9)

The complexity of the first term is known, so the next step will
be to experimentally study the magnitude of commT on the star
topology network using a different number of machines (2, 3 and
4 machines respectively). In this case, the different machines in
the network are Pentium 2.40 GHz with 256 Mb RAM.

The experimental results prove that the communication time
between the dispatcher and any node is constant, regardless of
the number of PCs and the size of the experiment (number of
SEUs). This is reasonable since i) nodes do not interact among
them (only with the dispatcher, and therefore increasing the
number of nodes should not affect communications) and ii) the
simulation script sent from the dispatcher to the nodes is
independent of the number of SEUs that are injected. Therefore,
it can be concluded that O(Tcomm) = O(1), i.e., it is constant.
Now, (9) can be rewritten as:

() ())1(·),(max·)(OpnOTpTOTpO commsp =+=⋅ (10)

And since n >> p always (more SEUs injected than PCs), then

)().(nOTpO p = (11)

Combining (8) and (11) it is clear that (3) is met, and therefore
the system is isoefficient. This means that no matter how large
the SEU campaign is, it will always be possible to add a new PC
that will help to keep the simulation time feasible bounded, in
spite of the communication overhead that this new PC may
introduce. A different issue is the saturation level of the
dispatcher, whose performance can decrease when a large
number of nodes are added. However, since the interaction
among nodes is so light, the number of processors to produce this

problem is so large that should not be an issue for the proposed
methodology.
In Table III, the simulation times obtained for different PCs and
several SEU campaigns are depicted. It is seen that, in general,
this simulation time decreases as more PCs are used, what is very
convenient for large SEU campaigns. However, there is one
exception: in the case of 10 SEUs, the results are worse when
new PCs are added. This is reasonable, since in this case n (10
SEUs) is low enough so that the relation n >> p is not met. In the
other cases, the results obtained show a significant improvement
in performance. A sample of this could be the improvement
obtained in the case of 10,000 SEUs, which is around 194% for 4
processors.

TABLE III: SIMULATION TIMES (IN SECONDS) FOR DIFFERENT NUMBER OF PCS
AND SEUS

Benchmark

Elliptic Filter 1 PC 2 PCs 3 PCs 4 PCs

10 SEUs 2.70 4.49 5.19 5.50
100 SEUs 27.33 18.43 15.70 13.99
200 SEUs 53.60 35.93 28.22 23.19

1,000 SEUs 266.45 162.98 132.34 99.10
10,000 SEUs 2689.35 1593.12 1275.37 915.01
100,000 SEUs 26637.25 16688.84 11463.37 9008.29

The results in Table III are graphically depicted in Fig. 4, where
the time optimizations can be seen for the different number of
nodes.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

Number of SEUs

T
im

e
[s

ec
]

Parallel Optimization

Without optimization [experimental]
Estimated data
2 nodes [experimental]
Estimated data
3 nodes [experimental]
Estimated data
4 nodes [experimental]
Estimated data

Fig. 4: Parallelism results.

2303

VI. CONCLUSIONS AND FUTURE WORK

In this paper, new proposals to improve the performance of the
SST simulation-based fault injection platform have been
presented. These new techniques have been developed using
both the features supplied by the ModelSim 6.3 simulator and
parallel computation through a distributed system. The benefits
of applying these methodologies are clearly proved with the
experimental results that have been obtained, increasing the
platform performance, and therefore being able to face larger
injections campaign. The use of this simulation environment that
enables a flexible testing of the effects of SEUs will facilitate
the future work, which will focus on the comparison between
the SST injection results and real radiation tests, in order to
measure the error rate prediction of the platform.

REFERENCES

[1] P. Dodd and L. Massengill, ”Basic Mechanisms and Modeling of Single

Event Upsets in Digital Microelectronics”, IEEE Transactions on Nuclear
Sciences, Vol. 50, Issue 3, pp.: 583 – 602, June 2003.

[2] H.J. Barnaby, “Will radiation hardening by design work?”, Nuclear &
Plasma Sciences Society News, 2005.

[3] D. Bessot and R Velazco, “Design of SEU-Hardened CMOS memory cells:
the HIT cell”, IEEE RADECS, Vol. 13, Issue 16, pp.: 563 – 570, Sep 1993.

[4] W. Chen, R. Gong, K. Dai, F. Liu and Z. Wang, “Two New Space-Time
Triple Modular Redundancy Techniques for Improving Fault Tolerance of
Computer Systems”, Computer and Information Technology, CIT, pp.: 175
– 175, Sept. 2006.

[5] P. Reyes, P. Reviriego, J.A. Maestro and O. Ruano, "New Protection
Techniques against SEUs for Moving Average Filters in a Radiation
Environment", IEEE Transactions on Nuclear Science, Vol. 54, Issue 4, pp.:
957 – 964, Aug. 2007.

[6] O. Ruano, J.A. Maestro, P. Reyes and P. Reviriego, "A Simulation Platform
for the Study of Soft Errors on Signal Processing Circuits through Software

Fault Injection", Proc. of IEEE International Symposium on Industrial
Electronics, pp.: 3316-3321 June 2007.

[7] J. M. Tombs, M. A. Aguirre, F. Muñoz, V. Baena, A. J. Torralba, A. F.
Leon and F. Tortosa, “An FPGA based hardware emulator for the insertion
and analysis of Single Event Upsets in VLSI Designs”, Proceedings of
RADECS, pp.: 10000-10004, Sept. 2004.

[8] M. A. Aguirre, J. Noel, V. Baena , F. Muñoz , A. lbañez, A. Fernández and
F. Tortosa: “Ft-Unshades: a New System for SEU Injection, Analysis and
Diagnostics Over Post Synthesis Netlist”, Mapld International Conference
Washington D.C., USA NASA Office of Logic Design, 2005.

[9] L. Sterpone and M. Violante, ”A New Partial Reconfiguration-based Fault-
Injection System to Evaluate SEU Effects in SRAM-based FPGAs”, IEEE
Transactions on Nuclear Science, Vol. 54, Issue 4, pp.: 965 – 970, Aug.
2007.

[10] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson and J. Karlsson, “Fault Injection into
VHDL Models: The MEFISTO Tool”, Proceedings of the 24th International
Symposium on Fault Tolerant Computing, IEEE, Vol. 23, Issue 25, pp.: 168
– 173, Jun 1998.

[11] S. Han, K.G. Shin and H.A. Rosenberg, “Doctor: An Integrated Software
Fault-Injection Environment for Distributed Real-Time Systems”, Proc.
IEEE Int. Computer Performance and Dependability Symposium, Vol. 24,
Issue 26, pp.: 204 – 213, Apr 1995.

[12] J. Carreira, H. Madeira and J. Silva, “Xception: Software Fault Injection and
Monitoring in Processor Functional Units”, Conference on Dependable
Computing for Critical Applications, 1995.

[13] G.A. Kanawati, N.A. Kanawati and J.A. Abraham, “FERRARI: A Flexible
Software-Based Fault and Error Injection System”, IEEE Transactions on
Computers, Vol. 44, Issue 2, pp.: 248 – 260, Feb 1995.

[14] A. Ejlali, S.G. Miremadi, H. Zarandi, G. Asadi and S.B. Sarmadi, “A hybrid
fault injection approach based on simulation and emulation co-operation”,
Dependable Systems and Networks, 2003.

[15] O. Ruano, P. Reyes, J.A. Maestro, L. Sterpone, and P. Reviriego, “An
Experimental analysis of SEU Sensitiveness on System Knowledge-based
Hardening Techniques”, IEEE DDCESS, Vol. 11, Issue 13, pp.: 1 – 6, April
2007.

[16] G. Komar, “Compute Farm Solution for Electronic Design Automation”,
White paper, ZORAN Microelectronics.

[17] A. Grama, A. Gupta, G. Karypis and V. Kumar, “Introduction to Parallel
Computing”, Addison Wesley, 2003.

2304

